Solve for x
x=\frac{10y+245}{59}
Solve for y
y=\frac{59x}{10}-24.5
Graph
Share
Copied to clipboard
y=24.5+10+4.9\left(x-10\right)+x-10
Multiply 10 and 2.45 to get 24.5.
y=34.5+4.9\left(x-10\right)+x-10
Add 24.5 and 10 to get 34.5.
y=34.5+4.9x-49+x-10
Use the distributive property to multiply 4.9 by x-10.
y=-14.5+4.9x+x-10
Subtract 49 from 34.5 to get -14.5.
y=-14.5+5.9x-10
Combine 4.9x and x to get 5.9x.
y=-24.5+5.9x
Subtract 10 from -14.5 to get -24.5.
-24.5+5.9x=y
Swap sides so that all variable terms are on the left hand side.
5.9x=y+24.5
Add 24.5 to both sides.
\frac{5.9x}{5.9}=\frac{y+24.5}{5.9}
Divide both sides of the equation by 5.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+24.5}{5.9}
Dividing by 5.9 undoes the multiplication by 5.9.
x=\frac{10y+245}{59}
Divide y+24.5 by 5.9 by multiplying y+24.5 by the reciprocal of 5.9.
y=24.5+10+4.9\left(x-10\right)+x-10
Multiply 10 and 2.45 to get 24.5.
y=34.5+4.9\left(x-10\right)+x-10
Add 24.5 and 10 to get 34.5.
y=34.5+4.9x-49+x-10
Use the distributive property to multiply 4.9 by x-10.
y=-14.5+4.9x+x-10
Subtract 49 from 34.5 to get -14.5.
y=-14.5+5.9x-10
Combine 4.9x and x to get 5.9x.
y=-24.5+5.9x
Subtract 10 from -14.5 to get -24.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}