Solve for x
x=-\frac{2}{5-y}
y\neq 5
Solve for y
y=5+\frac{2}{x}
x\neq 0
Graph
Share
Copied to clipboard
y=1\left(2x^{-1}+2\right)+3
Calculate 2x^{-1}+2 to the power of 1 and get 2x^{-1}+2.
y=2x^{-1}+2+3
Use the distributive property to multiply 1 by 2x^{-1}+2.
y=2x^{-1}+5
Add 2 and 3 to get 5.
2x^{-1}+5=y
Swap sides so that all variable terms are on the left hand side.
5+2\times \frac{1}{x}=y
Reorder the terms.
x\times 5+2\times 1=yx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times 5+2=yx
Multiply 2 and 1 to get 2.
x\times 5+2-yx=0
Subtract yx from both sides.
x\times 5-yx=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(5-y\right)x=-2
Combine all terms containing x.
\frac{\left(5-y\right)x}{5-y}=-\frac{2}{5-y}
Divide both sides by 5-y.
x=-\frac{2}{5-y}
Dividing by 5-y undoes the multiplication by 5-y.
x=-\frac{2}{5-y}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}