Solve for x
x=\frac{5y}{8}-3.825
Solve for y
y=\frac{8x}{5}+6.12
Graph
Share
Copied to clipboard
y=0\left(x+2.4\right)^{2}+0.8\left(2x+7.65\right)
Multiply 0 and 5 to get 0.
y=0\left(x^{2}+4.8x+5.76\right)+0.8\left(2x+7.65\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2.4\right)^{2}.
y=0+0.8\left(2x+7.65\right)
Anything times zero gives zero.
y=0+1.6x+6.12
Use the distributive property to multiply 0.8 by 2x+7.65.
y=6.12+1.6x
Add 0 and 6.12 to get 6.12.
6.12+1.6x=y
Swap sides so that all variable terms are on the left hand side.
1.6x=y-6.12
Subtract 6.12 from both sides.
\frac{1.6x}{1.6}=\frac{y-6.12}{1.6}
Divide both sides of the equation by 1.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-6.12}{1.6}
Dividing by 1.6 undoes the multiplication by 1.6.
x=\frac{5y}{8}-3.825
Divide y-6.12 by 1.6 by multiplying y-6.12 by the reciprocal of 1.6.
y=0\left(x+2.4\right)^{2}+0.8\left(2x+7.65\right)
Multiply 0 and 5 to get 0.
y=0\left(x^{2}+4.8x+5.76\right)+0.8\left(2x+7.65\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2.4\right)^{2}.
y=0+0.8\left(2x+7.65\right)
Anything times zero gives zero.
y=0+1.6x+6.12
Use the distributive property to multiply 0.8 by 2x+7.65.
y=6.12+1.6x
Add 0 and 6.12 to get 6.12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}