Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{-10x^{2}+67x-10y-20}{10x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=-2\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{-10x^{2}+67x-10y-20}{10x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=-2\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{36.89-8a-4y-4ay}-6.7}{2\left(a+1\right)}\text{; }x=\frac{\sqrt{36.89-8a-4y-4ay}+6.7}{2\left(a+1\right)}\text{, }&a\neq -1\\x=\frac{10y+20}{67}\text{, }&a=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{36.89-8a-4y-4ay}-6.7}{2\left(a+1\right)}\text{; }x=\frac{\sqrt{36.89-8a-4y-4ay}+6.7}{2\left(a+1\right)}\text{, }&\left(a<-1\text{ or }y\leq \frac{36.89-8a}{4\left(a+1\right)}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }a\neq -1\right)\text{ and }\left(a>-1\text{ or }\left(a\neq -1\text{ and }y\geq \frac{36.89-8a}{4\left(a+1\right)}\right)\right)\\x=\frac{10y+20}{67}\text{, }&a=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
y=-x^{2}-ax^{2}+6.7x-2
Combine -1.3x and 8x to get 6.7x.
-x^{2}-ax^{2}+6.7x-2=y
Swap sides so that all variable terms are on the left hand side.
-x^{2}-ax^{2}-2=y-6.7x
Subtract 6.7x from both sides.
-x^{2}-ax^{2}=y-6.7x+2
Add 2 to both sides.
-ax^{2}=y-6.7x+2+x^{2}
Add x^{2} to both sides.
\left(-x^{2}\right)a=x^{2}-\frac{67x}{10}+y+2
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{x^{2}-\frac{67x}{10}+y+2}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{x^{2}-\frac{67x}{10}+y+2}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-1+\frac{\frac{67x}{10}-y-2}{x^{2}}
Divide y+x^{2}-\frac{67x}{10}+2 by -x^{2}.
y=-x^{2}-ax^{2}+6.7x-2
Combine -1.3x and 8x to get 6.7x.
-x^{2}-ax^{2}+6.7x-2=y
Swap sides so that all variable terms are on the left hand side.
-x^{2}-ax^{2}-2=y-6.7x
Subtract 6.7x from both sides.
-x^{2}-ax^{2}=y-6.7x+2
Add 2 to both sides.
-ax^{2}=y-6.7x+2+x^{2}
Add x^{2} to both sides.
\left(-x^{2}\right)a=x^{2}-\frac{67x}{10}+y+2
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{x^{2}-\frac{67x}{10}+y+2}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{x^{2}-\frac{67x}{10}+y+2}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-1+\frac{\frac{67x}{10}-y-2}{x^{2}}
Divide y+x^{2}-\frac{67x}{10}+2 by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}