Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{c-y}{\left(x-b\right)^{2}}\text{, }&x\neq b\\a\in \mathrm{C}\text{, }&y=c\text{ and }x=b\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{c-y}{\left(x-b\right)^{2}}\text{, }&x\neq b\\a\in \mathrm{R}\text{, }&y=c\text{ and }x=b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=x-ia^{-\frac{1}{2}}\sqrt{y-c}\text{; }b=x+ia^{-\frac{1}{2}}\sqrt{y-c}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&y=c\text{ and }a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{\sqrt{a}x+\sqrt{c-y}}{\sqrt{a}}\text{; }b=\frac{\sqrt{a}x-\sqrt{c-y}}{\sqrt{a}}\text{, }&a>0\text{ and }y\leq c\\b=x+\sqrt{-\frac{y-c}{a}}\text{; }b=x-\sqrt{-\frac{y-c}{a}}\text{, }&y\geq c\text{ and }a<0\\b=x\text{, }&y=c\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&y=c\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\left(-a\right)\left(x^{2}-2xb+b^{2}\right)+c
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-b\right)^{2}.
y=\left(-a\right)x^{2}-2\left(-a\right)xb+\left(-a\right)b^{2}+c
Use the distributive property to multiply -a by x^{2}-2xb+b^{2}.
y=\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}+c
Multiply -2 and -1 to get 2.
\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}+c=y
Swap sides so that all variable terms are on the left hand side.
\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}=y-c
Subtract c from both sides.
-ax^{2}+2abx-ab^{2}=y-c
Reorder the terms.
\left(-x^{2}+2bx-b^{2}\right)a=y-c
Combine all terms containing a.
\frac{\left(-x^{2}+2bx-b^{2}\right)a}{-x^{2}+2bx-b^{2}}=\frac{y-c}{-x^{2}+2bx-b^{2}}
Divide both sides by -x^{2}+2bx-b^{2}.
a=\frac{y-c}{-x^{2}+2bx-b^{2}}
Dividing by -x^{2}+2bx-b^{2} undoes the multiplication by -x^{2}+2bx-b^{2}.
a=-\frac{y-c}{\left(x-b\right)^{2}}
Divide y-c by -x^{2}+2bx-b^{2}.
y=\left(-a\right)\left(x^{2}-2xb+b^{2}\right)+c
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-b\right)^{2}.
y=\left(-a\right)x^{2}-2\left(-a\right)xb+\left(-a\right)b^{2}+c
Use the distributive property to multiply -a by x^{2}-2xb+b^{2}.
y=\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}+c
Multiply -2 and -1 to get 2.
\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}+c=y
Swap sides so that all variable terms are on the left hand side.
\left(-a\right)x^{2}+2axb+\left(-a\right)b^{2}=y-c
Subtract c from both sides.
-ax^{2}+2abx-ab^{2}=y-c
Reorder the terms.
\left(-x^{2}+2bx-b^{2}\right)a=y-c
Combine all terms containing a.
\frac{\left(-x^{2}+2bx-b^{2}\right)a}{-x^{2}+2bx-b^{2}}=\frac{y-c}{-x^{2}+2bx-b^{2}}
Divide both sides by -x^{2}+2bx-b^{2}.
a=\frac{y-c}{-x^{2}+2bx-b^{2}}
Dividing by -x^{2}+2bx-b^{2} undoes the multiplication by -x^{2}+2bx-b^{2}.
a=-\frac{y-c}{\left(x-b\right)^{2}}
Divide y-c by -x^{2}+2bx-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}