Solve for x
x=\frac{\left(y+36\right)^{2}+81}{9}
-\frac{y}{3}-12\geq 0
Solve for x (complex solution)
x=\frac{\left(y+36\right)^{2}+81}{9}
y=-36\text{ or }arg(\frac{y}{3}+12)\geq \pi
Solve for y (complex solution)
y=-3\sqrt{x-9}-36
Solve for y
y=-3\sqrt{x-9}-36
x\geq 9
Graph
Share
Copied to clipboard
y=-3\sqrt{x-9}-36
Use the distributive property to multiply -3 by \sqrt{x-9}+12.
-3\sqrt{x-9}-36=y
Swap sides so that all variable terms are on the left hand side.
-3\sqrt{x-9}=y+36
Add 36 to both sides.
\frac{-3\sqrt{x-9}}{-3}=\frac{y+36}{-3}
Divide both sides by -3.
\sqrt{x-9}=\frac{y+36}{-3}
Dividing by -3 undoes the multiplication by -3.
\sqrt{x-9}=-\frac{y}{3}-12
Divide 36+y by -3.
x-9=\frac{\left(y+36\right)^{2}}{9}
Square both sides of the equation.
x-9-\left(-9\right)=\frac{\left(y+36\right)^{2}}{9}-\left(-9\right)
Add 9 to both sides of the equation.
x=\frac{\left(y+36\right)^{2}}{9}-\left(-9\right)
Subtracting -9 from itself leaves 0.
x=\frac{\left(y+36\right)^{2}}{9}+9
Subtract -9 from \frac{\left(36+y\right)^{2}}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}