Solve for x
x=\left(1-y\right)^{2}-3
1-y\geq 0
Solve for x (complex solution)
x=\left(1-y\right)^{2}-3
y=1\text{ or }arg(1-y)<\pi
Solve for y
y=-\sqrt{x+3}+1
x\geq -3
Graph
Share
Copied to clipboard
-\sqrt{x+3}+1=y
Swap sides so that all variable terms are on the left hand side.
-\sqrt{x+3}=y-1
Subtract 1 from both sides.
\frac{-\sqrt{x+3}}{-1}=\frac{y-1}{-1}
Divide both sides by -1.
\sqrt{x+3}=\frac{y-1}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{x+3}=1-y
Divide y-1 by -1.
x+3=\left(1-y\right)^{2}
Square both sides of the equation.
x+3-3=\left(1-y\right)^{2}-3
Subtract 3 from both sides of the equation.
x=\left(1-y\right)^{2}-3
Subtracting 3 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}