Solve for y
y=-\frac{\sqrt{161}i}{23}\approx -0-0.551677284i
y=\frac{\sqrt{161}i}{23}\approx 0.551677284i
Share
Copied to clipboard
y+\frac{7}{23y}=0
Add \frac{7}{23y} to both sides.
\frac{y\times 23y}{23y}+\frac{7}{23y}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{23y}{23y}.
\frac{y\times 23y+7}{23y}=0
Since \frac{y\times 23y}{23y} and \frac{7}{23y} have the same denominator, add them by adding their numerators.
\frac{23y^{2}+7}{23y}=0
Do the multiplications in y\times 23y+7.
23y^{2}+7=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 23y.
23y^{2}=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
y^{2}=-\frac{7}{23}
Divide both sides by 23.
y=\frac{\sqrt{161}i}{23} y=-\frac{\sqrt{161}i}{23}
The equation is now solved.
y+\frac{7}{23y}=0
Add \frac{7}{23y} to both sides.
\frac{y\times 23y}{23y}+\frac{7}{23y}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{23y}{23y}.
\frac{y\times 23y+7}{23y}=0
Since \frac{y\times 23y}{23y} and \frac{7}{23y} have the same denominator, add them by adding their numerators.
\frac{23y^{2}+7}{23y}=0
Do the multiplications in y\times 23y+7.
23y^{2}+7=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 23y.
y=\frac{0±\sqrt{0^{2}-4\times 23\times 7}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, 0 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 23\times 7}}{2\times 23}
Square 0.
y=\frac{0±\sqrt{-92\times 7}}{2\times 23}
Multiply -4 times 23.
y=\frac{0±\sqrt{-644}}{2\times 23}
Multiply -92 times 7.
y=\frac{0±2\sqrt{161}i}{2\times 23}
Take the square root of -644.
y=\frac{0±2\sqrt{161}i}{46}
Multiply 2 times 23.
y=\frac{\sqrt{161}i}{23}
Now solve the equation y=\frac{0±2\sqrt{161}i}{46} when ± is plus.
y=-\frac{\sqrt{161}i}{23}
Now solve the equation y=\frac{0±2\sqrt{161}i}{46} when ± is minus.
y=\frac{\sqrt{161}i}{23} y=-\frac{\sqrt{161}i}{23}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}