Skip to main content
Solve for x_1 (complex solution)
Tick mark Image
Solve for x_1
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\left(x^{2}-6x+9\right)x_{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
y=x^{2}x_{1}-6xx_{1}+9x_{1}
Use the distributive property to multiply x^{2}-6x+9 by x_{1}.
x^{2}x_{1}-6xx_{1}+9x_{1}=y
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-6x+9\right)x_{1}=y
Combine all terms containing x_{1}.
\frac{\left(x^{2}-6x+9\right)x_{1}}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
x_{1}=\frac{y}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
x_{1}=\frac{y}{\left(x-3\right)^{2}}
Divide y by x^{2}-6x+9.
y=\left(x^{2}-6x+9\right)x_{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
y=x^{2}x_{1}-6xx_{1}+9x_{1}
Use the distributive property to multiply x^{2}-6x+9 by x_{1}.
x^{2}x_{1}-6xx_{1}+9x_{1}=y
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-6x+9\right)x_{1}=y
Combine all terms containing x_{1}.
\frac{\left(x^{2}-6x+9\right)x_{1}}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
x_{1}=\frac{y}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
x_{1}=\frac{y}{\left(x-3\right)^{2}}
Divide y by x^{2}-6x+9.