Solve for x
x=\frac{2-y}{5}
Solve for y
y=2-5x
Graph
Share
Copied to clipboard
y=x^{2}-2x+1-3x-\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
y=x^{2}-5x+1-\left(x-1\right)\left(x+1\right)
Combine -2x and -3x to get -5x.
y=x^{2}-5x+1-\left(x^{2}-1\right)
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
y=x^{2}-5x+1-x^{2}+1
To find the opposite of x^{2}-1, find the opposite of each term.
y=-5x+1+1
Combine x^{2} and -x^{2} to get 0.
y=-5x+2
Add 1 and 1 to get 2.
-5x+2=y
Swap sides so that all variable terms are on the left hand side.
-5x=y-2
Subtract 2 from both sides.
\frac{-5x}{-5}=\frac{y-2}{-5}
Divide both sides by -5.
x=\frac{y-2}{-5}
Dividing by -5 undoes the multiplication by -5.
x=\frac{2-y}{5}
Divide y-2 by -5.
y=x^{2}-2x+1-3x-\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
y=x^{2}-5x+1-\left(x-1\right)\left(x+1\right)
Combine -2x and -3x to get -5x.
y=x^{2}-5x+1-\left(x^{2}-1\right)
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
y=x^{2}-5x+1-x^{2}+1
To find the opposite of x^{2}-1, find the opposite of each term.
y=-5x+1+1
Combine x^{2} and -x^{2} to get 0.
y=-5x+2
Add 1 and 1 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}