Solve for x
x=\frac{y+5}{2}
Solve for y
y=2x-5
Graph
Share
Copied to clipboard
y=x^{2}-4-\left(x-1\right)^{2}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
y=x^{2}-4-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
y=x^{2}-4-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
y=-4+2x-1
Combine x^{2} and -x^{2} to get 0.
y=-5+2x
Subtract 1 from -4 to get -5.
-5+2x=y
Swap sides so that all variable terms are on the left hand side.
2x=y+5
Add 5 to both sides.
\frac{2x}{2}=\frac{y+5}{2}
Divide both sides by 2.
x=\frac{y+5}{2}
Dividing by 2 undoes the multiplication by 2.
y=x^{2}-4-\left(x-1\right)^{2}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
y=x^{2}-4-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
y=x^{2}-4-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
y=-4+2x-1
Combine x^{2} and -x^{2} to get 0.
y=-5+2x
Subtract 1 from -4 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}