Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{1+4m-m^{2}-y}{m-3}\text{, }&m\neq 3\\x\in \mathrm{C}\text{, }&y=4\text{ and }m=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{1+4m-m^{2}-y}{m-3}\text{, }&m\neq 3\\x\in \mathrm{R}\text{, }&y=4\text{ and }m=3\end{matrix}\right.
Solve for m (complex solution)
m=\frac{-\sqrt{x^{2}-4x-4y+20}+x+4}{2}
m=\frac{\sqrt{x^{2}-4x-4y+20}+x+4}{2}
Solve for m
m=\frac{-\sqrt{x^{2}-4x-4y+20}+x+4}{2}
m=\frac{\sqrt{x^{2}-4x-4y+20}+x+4}{2}\text{, }y\leq \frac{x^{2}}{4}-x+5
Graph
Share
Copied to clipboard
y=mx-3x-\left(m-2\right)^{2}+5
Use the distributive property to multiply m-3 by x.
y=mx-3x-\left(m^{2}-4m+4\right)+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
y=mx-3x-m^{2}+4m-4+5
To find the opposite of m^{2}-4m+4, find the opposite of each term.
y=mx-3x-m^{2}+4m+1
Add -4 and 5 to get 1.
mx-3x-m^{2}+4m+1=y
Swap sides so that all variable terms are on the left hand side.
mx-3x+4m+1=y+m^{2}
Add m^{2} to both sides.
mx-3x+1=y+m^{2}-4m
Subtract 4m from both sides.
mx-3x=y+m^{2}-4m-1
Subtract 1 from both sides.
\left(m-3\right)x=y+m^{2}-4m-1
Combine all terms containing x.
\frac{\left(m-3\right)x}{m-3}=\frac{y+m^{2}-4m-1}{m-3}
Divide both sides by m-3.
x=\frac{y+m^{2}-4m-1}{m-3}
Dividing by m-3 undoes the multiplication by m-3.
y=mx-3x-\left(m-2\right)^{2}+5
Use the distributive property to multiply m-3 by x.
y=mx-3x-\left(m^{2}-4m+4\right)+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
y=mx-3x-m^{2}+4m-4+5
To find the opposite of m^{2}-4m+4, find the opposite of each term.
y=mx-3x-m^{2}+4m+1
Add -4 and 5 to get 1.
mx-3x-m^{2}+4m+1=y
Swap sides so that all variable terms are on the left hand side.
mx-3x+4m+1=y+m^{2}
Add m^{2} to both sides.
mx-3x+1=y+m^{2}-4m
Subtract 4m from both sides.
mx-3x=y+m^{2}-4m-1
Subtract 1 from both sides.
\left(m-3\right)x=y+m^{2}-4m-1
Combine all terms containing x.
\frac{\left(m-3\right)x}{m-3}=\frac{y+m^{2}-4m-1}{m-3}
Divide both sides by m-3.
x=\frac{y+m^{2}-4m-1}{m-3}
Dividing by m-3 undoes the multiplication by m-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}