y = ( k + 1 ) x ^ { k ^ { 2 } - k - 3 } d x
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}\text{, }&\left(x\neq 0\text{ and }k\neq -1\right)\text{ or }k=2\\d\in \mathrm{C}\text{, }&\left(k=-1\text{ or }x=0\right)\text{ and }k\neq 2\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}\text{, }&\left(k\neq -1\text{ and }x>0\right)\text{ or }\left(k\neq -1\text{ and }Denominator(\left(k-2\right)\left(k+1\right))\text{bmod}2=1\text{ and }x<0\text{ and }Denominator(k^{2}-k)\text{bmod}2=1\right)\\d\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\text{ and }k<\frac{1-\sqrt{13}}{2}\right)\text{ or }\left(y=0\text{ and }x=0\text{ and }k>\frac{\sqrt{13}+1}{2}\right)\text{ or }\left(y=0\text{ and }k=-1\text{ and }x\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\left(kx^{k^{2}-k-3}+x^{k^{2}-k-3}\right)dx
Use the distributive property to multiply k+1 by x^{k^{2}-k-3}.
y=\left(kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d\right)x
Use the distributive property to multiply kx^{k^{2}-k-3}+x^{k^{2}-k-3} by d.
y=kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx
Use the distributive property to multiply kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d by x.
kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx=y
Swap sides so that all variable terms are on the left hand side.
\left(kx^{k^{2}-k-3}x+x^{k^{2}-k-3}x\right)d=y
Combine all terms containing d.
\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d=y
The equation is in standard form.
\frac{\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Divide both sides by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Dividing by kx^{k^{2}-k-2}+x^{k^{2}-k-2} undoes the multiplication by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}
Divide y by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
y=\left(kx^{k^{2}-k-3}+x^{k^{2}-k-3}\right)dx
Use the distributive property to multiply k+1 by x^{k^{2}-k-3}.
y=\left(kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d\right)x
Use the distributive property to multiply kx^{k^{2}-k-3}+x^{k^{2}-k-3} by d.
y=kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx
Use the distributive property to multiply kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d by x.
kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx=y
Swap sides so that all variable terms are on the left hand side.
\left(kx^{k^{2}-k-3}x+x^{k^{2}-k-3}x\right)d=y
Combine all terms containing d.
\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d=y
The equation is in standard form.
\frac{\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Divide both sides by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Dividing by kx^{k^{2}-k-2}+x^{k^{2}-k-2} undoes the multiplication by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}
Divide y by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}