Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\left(kx^{k^{2}-k-3}+x^{k^{2}-k-3}\right)dx
Use the distributive property to multiply k+1 by x^{k^{2}-k-3}.
y=\left(kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d\right)x
Use the distributive property to multiply kx^{k^{2}-k-3}+x^{k^{2}-k-3} by d.
y=kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx
Use the distributive property to multiply kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d by x.
kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx=y
Swap sides so that all variable terms are on the left hand side.
\left(kx^{k^{2}-k-3}x+x^{k^{2}-k-3}x\right)d=y
Combine all terms containing d.
\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d=y
The equation is in standard form.
\frac{\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Divide both sides by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Dividing by kx^{k^{2}-k-2}+x^{k^{2}-k-2} undoes the multiplication by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}
Divide y by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
y=\left(kx^{k^{2}-k-3}+x^{k^{2}-k-3}\right)dx
Use the distributive property to multiply k+1 by x^{k^{2}-k-3}.
y=\left(kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d\right)x
Use the distributive property to multiply kx^{k^{2}-k-3}+x^{k^{2}-k-3} by d.
y=kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx
Use the distributive property to multiply kx^{k^{2}-k-3}d+x^{k^{2}-k-3}d by x.
kx^{k^{2}-k-3}dx+x^{k^{2}-k-3}dx=y
Swap sides so that all variable terms are on the left hand side.
\left(kx^{k^{2}-k-3}x+x^{k^{2}-k-3}x\right)d=y
Combine all terms containing d.
\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d=y
The equation is in standard form.
\frac{\left(kx^{k^{2}-k-2}+x^{k^{2}-k-2}\right)d}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Divide both sides by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{kx^{k^{2}-k-2}+x^{k^{2}-k-2}}
Dividing by kx^{k^{2}-k-2}+x^{k^{2}-k-2} undoes the multiplication by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.
d=\frac{y}{\left(k+1\right)x^{\left(k-2\right)\left(k+1\right)}}
Divide y by kx^{k^{2}-k-2}+x^{k^{2}-k-2}.