Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{xe^{x}+y-2e^{x}}{x\left(2-x\right)}\text{, }&x\neq 2\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(y=2\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=2\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{xe^{x}+y-2e^{x}}{x\left(2-x\right)}\text{, }&x\neq 2\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(y=2\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=2\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)
Use the distributive property to multiply ax-e^{x} by x-2.
\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-e^{x}x-2\left(ax-e^{x}\right)=y
Use the distributive property to multiply ax-e^{x} by x.
ax^{2}-e^{x}x-2ax+2e^{x}=y
Use the distributive property to multiply -2 by ax-e^{x}.
ax^{2}-2ax+2e^{x}=y+e^{x}x
Add e^{x}x to both sides.
ax^{2}-2ax=y+e^{x}x-2e^{x}
Subtract 2e^{x} from both sides.
\left(x^{2}-2x\right)a=y+e^{x}x-2e^{x}
Combine all terms containing a.
\left(x^{2}-2x\right)a=xe^{x}+y-2e^{x}
The equation is in standard form.
\frac{\left(x^{2}-2x\right)a}{x^{2}-2x}=\frac{xe^{x}+y-2e^{x}}{x^{2}-2x}
Divide both sides by x^{2}-2x.
a=\frac{xe^{x}+y-2e^{x}}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
a=\frac{xe^{x}+y-2e^{x}}{x\left(x-2\right)}
Divide y+e^{x}x-2e^{x} by x^{2}-2x.
y=\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)
Use the distributive property to multiply ax-e^{x} by x-2.
\left(ax-e^{x}\right)x-2\left(ax-e^{x}\right)=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-e^{x}x-2\left(ax-e^{x}\right)=y
Use the distributive property to multiply ax-e^{x} by x.
ax^{2}-e^{x}x-2ax+2e^{x}=y
Use the distributive property to multiply -2 by ax-e^{x}.
ax^{2}-2ax+2e^{x}=y+e^{x}x
Add e^{x}x to both sides.
ax^{2}-2ax=y+e^{x}x-2e^{x}
Subtract 2e^{x} from both sides.
\left(x^{2}-2x\right)a=y+e^{x}x-2e^{x}
Combine all terms containing a.
\left(x^{2}-2x\right)a=xe^{x}+y-2e^{x}
The equation is in standard form.
\frac{\left(x^{2}-2x\right)a}{x^{2}-2x}=\frac{xe^{x}+y-2e^{x}}{x^{2}-2x}
Divide both sides by x^{2}-2x.
a=\frac{xe^{x}+y-2e^{x}}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
a=\frac{xe^{x}+y-2e^{x}}{x\left(x-2\right)}
Divide y+e^{x}x-2e^{x} by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}