Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{4x^{2}+5x+y+1}{x\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(y=-1\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=-1\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{4x^{2}+5x+y+1}{x\left(x+1\right)}\text{, }&x\neq -1\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(y=-1\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=-1\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4ay-16y+a^{2}-6a+9}-a+5}{2\left(a-4\right)}\text{; }x=\frac{-\sqrt{4ay-16y+a^{2}-6a+9}-a+5}{2\left(a-4\right)}\text{, }&a\neq 4\\x=-y-1\text{, }&a=4\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{4ay-16y+a^{2}-6a+9}-a+5}{2\left(a-4\right)}\text{; }x=\frac{-\sqrt{4ay-16y+a^{2}-6a+9}-a+5}{2\left(a-4\right)}\text{, }&\left(a>4\text{ or }y\leq -\frac{\left(a-3\right)^{2}}{4a-16}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }a\neq 4\right)\text{ and }\left(a<4\text{ or }\left(a\neq 4\text{ and }y\geq -\frac{\left(a-3\right)^{2}}{4a-16}\right)\right)\\x=-y-1\text{, }&a=4\end{matrix}\right.
Graph
Share
Copied to clipboard
y=ax^{2}-4x^{2}+\left(a-5\right)x-1
Use the distributive property to multiply a-4 by x^{2}.
y=ax^{2}-4x^{2}+ax-5x-1
Use the distributive property to multiply a-5 by x.
ax^{2}-4x^{2}+ax-5x-1=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}+ax-5x-1=y+4x^{2}
Add 4x^{2} to both sides.
ax^{2}+ax-1=y+4x^{2}+5x
Add 5x to both sides.
ax^{2}+ax=y+4x^{2}+5x+1
Add 1 to both sides.
\left(x^{2}+x\right)a=y+4x^{2}+5x+1
Combine all terms containing a.
\left(x^{2}+x\right)a=4x^{2}+5x+y+1
The equation is in standard form.
\frac{\left(x^{2}+x\right)a}{x^{2}+x}=\frac{4x^{2}+5x+y+1}{x^{2}+x}
Divide both sides by x^{2}+x.
a=\frac{4x^{2}+5x+y+1}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
a=\frac{4x^{2}+5x+y+1}{x\left(x+1\right)}
Divide y+4x^{2}+1+5x by x^{2}+x.
y=ax^{2}-4x^{2}+\left(a-5\right)x-1
Use the distributive property to multiply a-4 by x^{2}.
y=ax^{2}-4x^{2}+ax-5x-1
Use the distributive property to multiply a-5 by x.
ax^{2}-4x^{2}+ax-5x-1=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}+ax-5x-1=y+4x^{2}
Add 4x^{2} to both sides.
ax^{2}+ax-1=y+4x^{2}+5x
Add 5x to both sides.
ax^{2}+ax=y+4x^{2}+5x+1
Add 1 to both sides.
\left(x^{2}+x\right)a=y+4x^{2}+5x+1
Combine all terms containing a.
\left(x^{2}+x\right)a=4x^{2}+5x+y+1
The equation is in standard form.
\frac{\left(x^{2}+x\right)a}{x^{2}+x}=\frac{4x^{2}+5x+y+1}{x^{2}+x}
Divide both sides by x^{2}+x.
a=\frac{4x^{2}+5x+y+1}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
a=\frac{4x^{2}+5x+y+1}{x\left(x+1\right)}
Divide y+4x^{2}+1+5x by x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}