Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{a\sigma -y}{\left(a-4\right)\left(a+2\right)}\text{, }&a\neq -2\text{ and }a\neq 4\\x\in \mathrm{C}\text{, }&\left(y=4\sigma \text{ and }a=4\right)\text{ or }\left(y=-2\sigma \text{ and }a=-2\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{a\sigma -y}{\left(a-4\right)\left(a+2\right)}\text{, }&a\neq -2\text{ and }a\neq 4\\x\in \mathrm{R}\text{, }&\left(y=4\sigma \text{ and }a=4\right)\text{ or }\left(y=-2\sigma \text{ and }a=-2\right)\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{\sqrt{36x^{2}+4xy-4x\sigma +\sigma ^{2}}+\sigma -2x}{2x}\text{; }a=-\frac{-\sqrt{36x^{2}+4xy-4x\sigma +\sigma ^{2}}+\sigma -2x}{2x}\text{, }&x\neq 0\\a=\frac{y}{\sigma }\text{, }&x=0\text{ and }\sigma \neq 0\\a\in \mathrm{C}\text{, }&x=0\text{ and }\sigma =0\text{ and }y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{\sqrt{36x^{2}+4xy-4x\sigma +\sigma ^{2}}+\sigma -2x}{2x}\text{; }a=-\frac{-\sqrt{36x^{2}+4xy-4x\sigma +\sigma ^{2}}+\sigma -2x}{2x}\text{, }&\left(x>0\text{ or }y\leq -\frac{36x^{2}-4x\sigma +\sigma ^{2}}{4x}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }x\neq 0\right)\text{ and }\left(x<0\text{ or }\left(x\neq 0\text{ and }y\geq -\frac{36x^{2}-4x\sigma +\sigma ^{2}}{4x}\right)\right)\\a=\frac{y}{\sigma }\text{, }&\sigma \neq 0\text{ and }x=0\\a\in \mathrm{R}\text{, }&x=0\text{ and }\sigma =0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=a^{2}x-2ax-8x+a\sigma
Use the distributive property to multiply a^{2}-2a-8 by x.
a^{2}x-2ax-8x+a\sigma =y
Swap sides so that all variable terms are on the left hand side.
a^{2}x-2ax-8x=y-a\sigma
Subtract a\sigma from both sides.
\left(a^{2}-2a-8\right)x=y-a\sigma
Combine all terms containing x.
\frac{\left(a^{2}-2a-8\right)x}{a^{2}-2a-8}=\frac{y-a\sigma }{a^{2}-2a-8}
Divide both sides by a^{2}-2a-8.
x=\frac{y-a\sigma }{a^{2}-2a-8}
Dividing by a^{2}-2a-8 undoes the multiplication by a^{2}-2a-8.
x=\frac{y-a\sigma }{\left(a-4\right)\left(a+2\right)}
Divide y-a\sigma by a^{2}-2a-8.
y=a^{2}x-2ax-8x+a\sigma
Use the distributive property to multiply a^{2}-2a-8 by x.
a^{2}x-2ax-8x+a\sigma =y
Swap sides so that all variable terms are on the left hand side.
a^{2}x-2ax-8x=y-a\sigma
Subtract a\sigma from both sides.
\left(a^{2}-2a-8\right)x=y-a\sigma
Combine all terms containing x.
\frac{\left(a^{2}-2a-8\right)x}{a^{2}-2a-8}=\frac{y-a\sigma }{a^{2}-2a-8}
Divide both sides by a^{2}-2a-8.
x=\frac{y-a\sigma }{a^{2}-2a-8}
Dividing by a^{2}-2a-8 undoes the multiplication by a^{2}-2a-8.
x=\frac{y-a\sigma }{\left(a-4\right)\left(a+2\right)}
Divide y-a\sigma by a^{2}-2a-8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}