Solve for t
t=-\frac{1-2y}{3y-4}
y\neq \frac{4}{3}
Solve for y
y=-\frac{1-4t}{3t-2}
t\neq \frac{2}{3}
Graph
Share
Copied to clipboard
y=4t\left(3t-2\right)^{-1}-\left(3t-2\right)^{-1}
Use the distributive property to multiply 4t-1 by \left(3t-2\right)^{-1}.
4t\left(3t-2\right)^{-1}-\left(3t-2\right)^{-1}=y
Swap sides so that all variable terms are on the left hand side.
4\times \frac{1}{3t-2}t-\frac{1}{3t-2}=y
Reorder the terms.
4\times 1t-1=y\left(3t-2\right)
Variable t cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3t-2.
4t-1=y\left(3t-2\right)
Do the multiplications.
4t-1=3yt-2y
Use the distributive property to multiply y by 3t-2.
4t-1-3yt=-2y
Subtract 3yt from both sides.
4t-3yt=-2y+1
Add 1 to both sides.
\left(4-3y\right)t=-2y+1
Combine all terms containing t.
\left(4-3y\right)t=1-2y
The equation is in standard form.
\frac{\left(4-3y\right)t}{4-3y}=\frac{1-2y}{4-3y}
Divide both sides by 4-3y.
t=\frac{1-2y}{4-3y}
Dividing by 4-3y undoes the multiplication by 4-3y.
t=\frac{1-2y}{4-3y}\text{, }t\neq \frac{2}{3}
Variable t cannot be equal to \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}