Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{2x^{2}-180x-y+16800}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=16800\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{2x^{2}-180x-y+16800}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=16800\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
x=\frac{-\sqrt{8y+a^{2}+360a-102000}+a+180}{4}
x=\frac{\sqrt{8y+a^{2}+360a-102000}+a+180}{4}
Solve for x
x=\frac{-\sqrt{8y+a^{2}+360a-102000}+a+180}{4}
x=\frac{\sqrt{8y+a^{2}+360a-102000}+a+180}{4}\text{, }y\geq -\frac{a^{2}}{8}-45a+12750
Graph
Share
Copied to clipboard
y=2x^{2}-ax+170\left(70-x\right)+160\left(40-x\right)+150\left(x-10\right)
Use the distributive property to multiply 2x-a by x.
y=2x^{2}-ax+11900-170x+160\left(40-x\right)+150\left(x-10\right)
Use the distributive property to multiply 170 by 70-x.
y=2x^{2}-ax+11900-170x+6400-160x+150\left(x-10\right)
Use the distributive property to multiply 160 by 40-x.
y=2x^{2}-ax+18300-170x-160x+150\left(x-10\right)
Add 11900 and 6400 to get 18300.
y=2x^{2}-ax+18300-330x+150\left(x-10\right)
Combine -170x and -160x to get -330x.
y=2x^{2}-ax+18300-330x+150x-1500
Use the distributive property to multiply 150 by x-10.
y=2x^{2}-ax+18300-180x-1500
Combine -330x and 150x to get -180x.
y=2x^{2}-ax+16800-180x
Subtract 1500 from 18300 to get 16800.
2x^{2}-ax+16800-180x=y
Swap sides so that all variable terms are on the left hand side.
-ax+16800-180x=y-2x^{2}
Subtract 2x^{2} from both sides.
-ax-180x=y-2x^{2}-16800
Subtract 16800 from both sides.
-ax=y-2x^{2}-16800+180x
Add 180x to both sides.
\left(-x\right)a=-2x^{2}+180x+y-16800
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-2x^{2}+180x+y-16800}{-x}
Divide both sides by -x.
a=\frac{-2x^{2}+180x+y-16800}{-x}
Dividing by -x undoes the multiplication by -x.
a=2x+\frac{16800-y}{x}-180
Divide y-16800+180x-2x^{2} by -x.
y=2x^{2}-ax+170\left(70-x\right)+160\left(40-x\right)+150\left(x-10\right)
Use the distributive property to multiply 2x-a by x.
y=2x^{2}-ax+11900-170x+160\left(40-x\right)+150\left(x-10\right)
Use the distributive property to multiply 170 by 70-x.
y=2x^{2}-ax+11900-170x+6400-160x+150\left(x-10\right)
Use the distributive property to multiply 160 by 40-x.
y=2x^{2}-ax+18300-170x-160x+150\left(x-10\right)
Add 11900 and 6400 to get 18300.
y=2x^{2}-ax+18300-330x+150\left(x-10\right)
Combine -170x and -160x to get -330x.
y=2x^{2}-ax+18300-330x+150x-1500
Use the distributive property to multiply 150 by x-10.
y=2x^{2}-ax+18300-180x-1500
Combine -330x and 150x to get -180x.
y=2x^{2}-ax+16800-180x
Subtract 1500 from 18300 to get 16800.
2x^{2}-ax+16800-180x=y
Swap sides so that all variable terms are on the left hand side.
-ax+16800-180x=y-2x^{2}
Subtract 2x^{2} from both sides.
-ax-180x=y-2x^{2}-16800
Subtract 16800 from both sides.
-ax=y-2x^{2}-16800+180x
Add 180x to both sides.
\left(-x\right)a=-2x^{2}+180x+y-16800
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-2x^{2}+180x+y-16800}{-x}
Divide both sides by -x.
a=\frac{-2x^{2}+180x+y-16800}{-x}
Dividing by -x undoes the multiplication by -x.
a=2x+\frac{16800-y}{x}-180
Divide y-16800+180x-2x^{2} by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}