y = ( 2 x ^ { 2 } + 1 ) d x
Solve for d
\left\{\begin{matrix}d=\frac{y}{2x^{3}+x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt[3]{\frac{6}{d|d|}}\left(\sqrt[3]{d\sqrt{3\left(27y^{2}+2d^{2}\right)}+9y|d|}+\sqrt[3]{-d\sqrt{3\left(27y^{2}+2d^{2}\right)}+9y|d|}\right)}{6}\text{, }&d\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\left(2x^{2}d+d\right)x
Use the distributive property to multiply 2x^{2}+1 by d.
y=2dx^{3}+dx
Use the distributive property to multiply 2x^{2}d+d by x.
2dx^{3}+dx=y
Swap sides so that all variable terms are on the left hand side.
\left(2x^{3}+x\right)d=y
Combine all terms containing d.
\frac{\left(2x^{3}+x\right)d}{2x^{3}+x}=\frac{y}{2x^{3}+x}
Divide both sides by 2x^{3}+x.
d=\frac{y}{2x^{3}+x}
Dividing by 2x^{3}+x undoes the multiplication by 2x^{3}+x.
d=\frac{y}{x\left(2x^{2}+1\right)}
Divide y by 2x^{3}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}