Solve for a (complex solution)
\left\{\begin{matrix}a=6-\frac{y}{4x^{2}}+\frac{3}{4x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=6-\frac{y}{4x^{2}}+\frac{3}{4x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{9+96y-16ay}+3}{8\left(a-6\right)}\text{; }x=\frac{-\sqrt{9+96y-16ay}+3}{8\left(a-6\right)}\text{, }&a\neq 6\\x=\frac{y}{3}\text{, }&a=6\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{9+96y-16ay}+3}{8\left(a-6\right)}\text{; }x=\frac{-\sqrt{9+96y-16ay}+3}{8\left(a-6\right)}\text{, }&\left(a<6\text{ or }y\leq -\frac{9}{96-16a}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }a\neq 6\right)\text{ and }\left(a>6\text{ or }\left(a\neq 6\text{ and }y\geq -\frac{9}{96-16a}\right)\right)\\x=\frac{y}{3}\text{, }&a=6\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\left(3+24x\right)x-4ax^{2}
Use the distributive property to multiply 1+8x by 3.
y=3x+24x^{2}-4ax^{2}
Use the distributive property to multiply 3+24x by x.
3x+24x^{2}-4ax^{2}=y
Swap sides so that all variable terms are on the left hand side.
24x^{2}-4ax^{2}=y-3x
Subtract 3x from both sides.
-4ax^{2}=y-3x-24x^{2}
Subtract 24x^{2} from both sides.
\left(-4x^{2}\right)a=y-3x-24x^{2}
The equation is in standard form.
\frac{\left(-4x^{2}\right)a}{-4x^{2}}=\frac{y-3x-24x^{2}}{-4x^{2}}
Divide both sides by -4x^{2}.
a=\frac{y-3x-24x^{2}}{-4x^{2}}
Dividing by -4x^{2} undoes the multiplication by -4x^{2}.
a=6+\frac{3x-y}{4x^{2}}
Divide y-3x-24x^{2} by -4x^{2}.
y=\left(3+24x\right)x-4ax^{2}
Use the distributive property to multiply 1+8x by 3.
y=3x+24x^{2}-4ax^{2}
Use the distributive property to multiply 3+24x by x.
3x+24x^{2}-4ax^{2}=y
Swap sides so that all variable terms are on the left hand side.
24x^{2}-4ax^{2}=y-3x
Subtract 3x from both sides.
-4ax^{2}=y-3x-24x^{2}
Subtract 24x^{2} from both sides.
\left(-4x^{2}\right)a=y-3x-24x^{2}
The equation is in standard form.
\frac{\left(-4x^{2}\right)a}{-4x^{2}}=\frac{y-3x-24x^{2}}{-4x^{2}}
Divide both sides by -4x^{2}.
a=\frac{y-3x-24x^{2}}{-4x^{2}}
Dividing by -4x^{2} undoes the multiplication by -4x^{2}.
a=6+\frac{3x-y}{4x^{2}}
Divide y-3x-24x^{2} by -4x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}