Solve for m
m=-x\left(|x|-y+4\right)
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{y^{2}-8y-4m+16}+y-4}{2}\text{, }&\left(y\geq 2\sqrt{m}+4\text{ and }y>4\text{ and }m\leq \frac{\left(y-4\right)^{2}}{4}\text{ and }m>0\right)\text{ or }\left(y=2\sqrt{m}+4\text{ and }m>0\right)\\x=\frac{\sqrt{y^{2}-8y-4m+16}+y-4}{2}\text{, }&m<0\text{ or }\left(y>4\text{ and }y\geq 2\sqrt{m}+4\text{ and }m\leq \frac{\left(y-4\right)^{2}}{4}\text{ and }m\geq 0\right)\text{ or }\left(y>4\text{ and }m\leq 0\right)\\x=\frac{\sqrt{y^{2}-8y+4m+16}-y+4}{2}\text{, }&\left(y\geq 2\sqrt{-m}+4\text{ and }y>4\text{ and }m\geq -\frac{\left(y-4\right)^{2}}{4}\text{ and }m<0\right)\text{ or }\left(y=2\sqrt{-m}+4\text{ and }m<0\right)\\x=\frac{-\sqrt{y^{2}-8y+4m+16}-y+4}{2}\text{, }&m>0\text{ or }\left(y>4\text{ and }y\geq 2\sqrt{-m}+4\text{ and }m\geq -\frac{\left(y-4\right)^{2}}{4}\text{ and }m\leq 0\right)\text{ or }\left(y>4\text{ and }m\geq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}