Solve for a (complex solution)
a=\left(|y|\right)^{\left(Re(\frac{1}{n})-iIm(\frac{1}{n})\right)\left(\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}\right)}e^{-2\pi Re(\frac{1}{n})n_{1}i\left(\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}\right)-2\pi Im(\frac{1}{n})n_{1}\left(\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}\right)+\left(Im(\frac{1}{n})+iRe(\frac{1}{n})\right)arg(y)\left(\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}\right)}
n_{1}\in \mathrm{Z}
n\neq 0
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\ln(a)}{\ln(y)+2\pi n_{1}i}\text{, }n_{1}\in \mathrm{Z}\text{, }&a\neq 1\text{ and }a\neq 0\text{ and }y\neq 1\text{ and }y\neq 0\\n\neq 0\text{, }&\left(a=0\text{ and }y=0\right)\text{ or }\left(a=1\text{ and }y=1\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=y^{n}\text{, }&\left(Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\text{ and }y<0\text{ and }y^{n}\neq 0\right)\text{ or }\left(n\neq 0\text{ and }y>0\right)\text{ or }\left(y>0\text{ and }y^{n}<0\text{ and }Numerator(n)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }n>0\right)\\a=-y^{n}\text{, }&\left(y<0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=0\text{ and }Numerator(n)\text{bmod}2=1\text{ and }y^{n}\neq 0\right)\text{ or }\left(y>0\text{ and }y^{n}<0\text{ and }Denominator(n)\text{bmod}2=0\right)\text{ or }\left(n>0\text{ and }Denominator(n)\text{bmod}2=0\text{ and }y=0\right)\text{ or }\left(y>0\text{ and }Denominator(n)\text{bmod}2=0\text{ and }Numerator(n)\text{bmod}2=1\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\log_{y}\left(a\right)\text{, }&a\neq 1\text{ and }y\neq 1\text{ and }a>0\text{ and }y>0\\n\in \mathrm{R}\text{, }&a=-1\text{ and }y=-1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\\n>0\text{, }&a=0\text{ and }y=0\\n\neq 0\text{, }&y=1\text{ and }a=1\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}