Solve for q (complex solution)
\left\{\begin{matrix}q=\frac{\sqrt{p}x}{2y}\text{, }&y\neq 0\\q\in \mathrm{C}\text{, }&\left(p=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=4\times \left(\frac{qy}{x}\right)^{2}\text{, }&\left(q\leq 0\text{ or }x<0\text{ or }y\geq 0\right)\text{ and }\left(y\leq 0\text{ or }x<0\text{ or }q\geq 0\right)\text{ and }\left(q\leq 0\text{ or }y\leq 0\text{ or }x>0\right)\text{ and }x\neq 0\text{ and }\left(x>0\text{ or }q\geq 0\text{ or }y\geq 0\right)\\p\geq 0\text{, }&\left(q=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=0\right)\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=\frac{\sqrt{p}x}{2y}\text{, }&y\neq 0\text{ and }p\geq 0\\q\in \mathrm{R}\text{, }&\left(p=0\text{ or }x=0\right)\text{ and }p\geq 0\text{ and }y=0\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=4\times \left(\frac{qy}{x}\right)^{2}\text{, }&x\neq 0\text{ and }\left(|arg(x\sqrt{\left(\frac{qy}{x}\right)^{2}})-arg(qy)|<\pi \text{ or }q=0\text{ or }y=0\right)\\p\in \mathrm{C}\text{, }&\left(q=0\text{ or }y=0\right)\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt{p}x-2qy+y=y
Swap sides so that all variable terms are on the left hand side.
-2qy+y=y-\sqrt{p}x
Subtract \sqrt{p}x from both sides.
-2qy=y-\sqrt{p}x-y
Subtract y from both sides.
-2qy=-\sqrt{p}x
Combine y and -y to get 0.
\left(-2y\right)q=-\sqrt{p}x
The equation is in standard form.
\frac{\left(-2y\right)q}{-2y}=-\frac{\sqrt{p}x}{-2y}
Divide both sides by -2y.
q=-\frac{\sqrt{p}x}{-2y}
Dividing by -2y undoes the multiplication by -2y.
q=\frac{\sqrt{p}x}{2y}
Divide -\sqrt{p}x by -2y.
\sqrt{p}x-2qy+y=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{p}x+y=y+2qy
Add 2qy to both sides.
\sqrt{p}x=y+2qy-y
Subtract y from both sides.
\sqrt{p}x=2qy
Combine y and -y to get 0.
\frac{x\sqrt{p}}{x}=\frac{2qy}{x}
Divide both sides by x.
\sqrt{p}=\frac{2qy}{x}
Dividing by x undoes the multiplication by x.
p=\frac{4q^{2}y^{2}}{x^{2}}
Square both sides of the equation.
\sqrt{p}x-2qy+y=y
Swap sides so that all variable terms are on the left hand side.
-2qy+y=y-\sqrt{p}x
Subtract \sqrt{p}x from both sides.
-2qy=y-\sqrt{p}x-y
Subtract y from both sides.
-2qy=-\sqrt{p}x
Combine y and -y to get 0.
\left(-2y\right)q=-\sqrt{p}x
The equation is in standard form.
\frac{\left(-2y\right)q}{-2y}=-\frac{\sqrt{p}x}{-2y}
Divide both sides by -2y.
q=-\frac{\sqrt{p}x}{-2y}
Dividing by -2y undoes the multiplication by -2y.
q=\frac{\sqrt{p}x}{2y}
Divide -\sqrt{p}x by -2y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}