Solve for a (complex solution)
\left\{\begin{matrix}a=-\left(3x+1\right)^{-\frac{1}{2}}\left(1-y\right)\text{, }&x\neq -\frac{1}{3}\\a\in \mathrm{C}\text{, }&y=1\text{ and }x=-\frac{1}{3}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{1-y}{\sqrt{3x+1}}\text{, }&x>-\frac{1}{3}\\a\in \mathrm{R}\text{, }&x=-\frac{1}{3}\text{ and }y=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{-\left(y-1\right)^{2}+a^{2}}{3a^{2}}\text{, }&\left(y\geq 1\text{ and }a>0\right)\text{ or }\left(y\leq 1\text{ and }a<0\right)\\x\geq -\frac{1}{3}\text{, }&y=1\text{ and }a=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{-\left(1-y\right)^{2}+a^{2}}{3a^{2}}\text{, }&\left(y=1\text{ or }arg(\frac{1-y}{a})\geq \pi \right)\text{ and }a\neq 0\\x\in \mathrm{C}\text{, }&y=1\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt{3x+1}a+1=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3x+1}a=y-1
Subtract 1 from both sides.
\frac{\sqrt{3x+1}a}{\sqrt{3x+1}}=\frac{y-1}{\sqrt{3x+1}}
Divide both sides by \sqrt{3x+1}.
a=\frac{y-1}{\sqrt{3x+1}}
Dividing by \sqrt{3x+1} undoes the multiplication by \sqrt{3x+1}.
a=\left(3x+1\right)^{-\frac{1}{2}}\left(y-1\right)
Divide y-1 by \sqrt{3x+1}.
\sqrt{3x+1}a+1=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3x+1}a=y-1
Subtract 1 from both sides.
\frac{\sqrt{3x+1}a}{\sqrt{3x+1}}=\frac{y-1}{\sqrt{3x+1}}
Divide both sides by \sqrt{3x+1}.
a=\frac{y-1}{\sqrt{3x+1}}
Dividing by \sqrt{3x+1} undoes the multiplication by \sqrt{3x+1}.
\sqrt{3x+1}a+1=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3x+1}a=y-1
Subtract 1 from both sides.
\frac{a\sqrt{3x+1}}{a}=\frac{y-1}{a}
Divide both sides by a.
\sqrt{3x+1}=\frac{y-1}{a}
Dividing by a undoes the multiplication by a.
3x+1=\frac{\left(y-1\right)^{2}}{a^{2}}
Square both sides of the equation.
3x+1-1=\frac{\left(y-1\right)^{2}}{a^{2}}-1
Subtract 1 from both sides of the equation.
3x=\frac{\left(y-1\right)^{2}}{a^{2}}-1
Subtracting 1 from itself leaves 0.
3x=\frac{\left(y-1\right)^{2}-a^{2}}{a^{2}}
Subtract 1 from \frac{\left(-1+y\right)^{2}}{a^{2}}.
\frac{3x}{3}=\frac{\left(y-1\right)^{2}-a^{2}}{3a^{2}}
Divide both sides by 3.
x=\frac{\left(y-1\right)^{2}-a^{2}}{3a^{2}}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}