Skip to main content
Solve for t (complex solution)
Tick mark Image
Solve for t
Tick mark Image
Graph

Share

\sqrt{3-x}t\arctan(\frac{1}{x})=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3-x}\arctan(\frac{1}{x})t=y
The equation is in standard form.
\frac{\sqrt{3-x}\arctan(\frac{1}{x})t}{\sqrt{3-x}\arctan(\frac{1}{x})}=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Divide both sides by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Dividing by \sqrt{3-x}\arctan(x^{-1}) undoes the multiplication by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{\left(3-x\right)^{-\frac{1}{2}}y}{\arctan(\frac{1}{x})}
Divide y by \sqrt{3-x}\arctan(x^{-1}).
\sqrt{3-x}t\arctan(\frac{1}{x})=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3-x}\arctan(\frac{1}{x})t=y
The equation is in standard form.
\frac{\sqrt{3-x}\arctan(\frac{1}{x})t}{\sqrt{3-x}\arctan(\frac{1}{x})}=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Divide both sides by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Dividing by \sqrt{3-x}\arctan(x^{-1}) undoes the multiplication by \sqrt{3-x}\arctan(x^{-1}).