Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{\left(3-x\right)^{-\frac{1}{2}}y}{\arctan(\frac{1}{x})}\text{, }&x\neq 3\text{ and }x\neq 0\\t\in \mathrm{C}\text{, }&x=3\text{ and }y=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}\text{, }&x\neq 0\text{ and }x<3\\t\in \mathrm{R}\text{, }&y=0\text{ and }x=3\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt{3-x}t\arctan(\frac{1}{x})=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3-x}\arctan(\frac{1}{x})t=y
The equation is in standard form.
\frac{\sqrt{3-x}\arctan(\frac{1}{x})t}{\sqrt{3-x}\arctan(\frac{1}{x})}=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Divide both sides by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Dividing by \sqrt{3-x}\arctan(x^{-1}) undoes the multiplication by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{\left(3-x\right)^{-\frac{1}{2}}y}{\arctan(\frac{1}{x})}
Divide y by \sqrt{3-x}\arctan(x^{-1}).
\sqrt{3-x}t\arctan(\frac{1}{x})=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{3-x}\arctan(\frac{1}{x})t=y
The equation is in standard form.
\frac{\sqrt{3-x}\arctan(\frac{1}{x})t}{\sqrt{3-x}\arctan(\frac{1}{x})}=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Divide both sides by \sqrt{3-x}\arctan(x^{-1}).
t=\frac{y}{\sqrt{3-x}\arctan(\frac{1}{x})}
Dividing by \sqrt{3-x}\arctan(x^{-1}) undoes the multiplication by \sqrt{3-x}\arctan(x^{-1}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}