y = \sqrt { ( 2 a + 2 - 2 b }
Solve for a
a=\frac{y^{2}}{2}+b-1
y\geq 0
Solve for b
b=-\frac{y^{2}}{2}+a+1
y\geq 0
Graph
Share
Copied to clipboard
\sqrt{2a+2-2b}=y
Swap sides so that all variable terms are on the left hand side.
2a+2-2b=y^{2}
Square both sides of the equation.
2a+2-2b-\left(2-2b\right)=y^{2}-\left(2-2b\right)
Subtract 2-2b from both sides of the equation.
2a=y^{2}-\left(2-2b\right)
Subtracting 2-2b from itself leaves 0.
2a=y^{2}+2b-2
Subtract 2-2b from y^{2}.
\frac{2a}{2}=\frac{y^{2}+2b-2}{2}
Divide both sides by 2.
a=\frac{y^{2}+2b-2}{2}
Dividing by 2 undoes the multiplication by 2.
a=\frac{y^{2}}{2}+b-1
Divide y^{2}-2+2b by 2.
\sqrt{2a+2-2b}=y
Swap sides so that all variable terms are on the left hand side.
-2b+2a+2=y^{2}
Square both sides of the equation.
-2b+2a+2-\left(2a+2\right)=y^{2}-\left(2a+2\right)
Subtract 2+2a from both sides of the equation.
-2b=y^{2}-\left(2a+2\right)
Subtracting 2+2a from itself leaves 0.
-2b=y^{2}-2a-2
Subtract 2+2a from y^{2}.
\frac{-2b}{-2}=\frac{y^{2}-2a-2}{-2}
Divide both sides by -2.
b=\frac{y^{2}-2a-2}{-2}
Dividing by -2 undoes the multiplication by -2.
b=-\frac{y^{2}}{2}+a+1
Divide y^{2}-2-2a by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}