Solve for x
x=\frac{y^{2}-262154}{30}
y\geq 0
Solve for x (complex solution)
x=\frac{y^{2}-262154}{30}
arg(y)<\pi \text{ or }y=0
Solve for y (complex solution)
y=\sqrt{30x+262154}
Solve for y
y=\sqrt{30x+262154}
x\geq -\frac{131077}{15}
Graph
Share
Copied to clipboard
y=\sqrt{\frac{200+600x}{20}+262144}
Calculate 8 to the power of 6 and get 262144.
y=\sqrt{10+30x+262144}
Divide each term of 200+600x by 20 to get 10+30x.
y=\sqrt{262154+30x}
Add 10 and 262144 to get 262154.
\sqrt{262154+30x}=y
Swap sides so that all variable terms are on the left hand side.
30x+262154=y^{2}
Square both sides of the equation.
30x+262154-262154=y^{2}-262154
Subtract 262154 from both sides of the equation.
30x=y^{2}-262154
Subtracting 262154 from itself leaves 0.
\frac{30x}{30}=\frac{y^{2}-262154}{30}
Divide both sides by 30.
x=\frac{y^{2}-262154}{30}
Dividing by 30 undoes the multiplication by 30.
x=\frac{y^{2}}{30}-\frac{131077}{15}
Divide y^{2}-262154 by 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}