Solve for x (complex solution)
x\in \cup n_{2},\sqrt{\ln(-i\ln(-\sqrt{1-y^{2}}+iy)+2\pi n_{1})+2i\pi n_{2}},-\sqrt{\ln(-i\ln(-\sqrt{1-y^{2}}+iy)+2\pi n_{1})+2i\pi n_{2}}\text{, }n_{1}\in \mathrm{Z}
x\in \cup n_{4},-\sqrt{\ln(-i\ln(\sqrt{1-y^{2}}+iy)+2\pi n_{3})+2i\pi n_{4}}\text{, }n_{3}\in \mathrm{Z}\text{, }\left(n_{3}\neq 0\text{ or }y\neq 0\right)\text{ and }n_{3}\neq \frac{i\ln(\sqrt{1-y^{2}}+iy)}{2\pi }
x\in \cup n_{4},\sqrt{\ln(-i\ln(\sqrt{1-y^{2}}+iy)+2\pi n_{3})+2i\pi n_{4}}\text{, }n_{3}\in \mathrm{Z}\text{, }\left(n_{3}\neq 0\text{ or }y\neq 0\right)\text{ and }n_{3}\neq \frac{i\ln(\sqrt{1-y^{2}}+iy)}{2\pi }
Solve for x
x=-\sqrt{\ln(-\arcsin(y)+2\pi n_{1}+\pi )}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq 0
x=\sqrt{\ln(-\arcsin(y)+2\pi n_{1}+\pi )}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq 0
x=-\sqrt{\ln(\arcsin(y)+2\pi n_{2})}\text{, }n_{2}\in \mathrm{Z}\text{, }\left(y\leq 1\text{ and }n_{2}\geq 1\text{ and }y>0\right)\text{ or }\left(n_{2}\geq 1\text{ and }|y|\leq 1\right)\text{ or }\left(y\leq 1\text{ and }n_{2}\geq 0\text{ and }y\geq \sin(1)\right)
x=\sqrt{\ln(\arcsin(y)+2\pi n_{2})}\text{, }n_{2}\in \mathrm{Z}\text{, }\left(y\leq 1\text{ and }n_{2}\geq 1\text{ and }y>0\right)\text{ or }\left(n_{2}\geq 1\text{ and }|y|\leq 1\right)\text{ or }\left(y\leq 1\text{ and }n_{2}\geq 0\text{ and }y\geq \sin(1)\right)\text{, }|y|\leq 1
Solve for y
y=\sin(e^{x^{2}})
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}