y = \sin ( \frac { \pi } { 3 } - 2 x ) d x
Solve for d
\left\{\begin{matrix}d=\frac{y}{x\sin(\frac{\pi -6x}{3})}\text{, }&x\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{6}\\d\in \mathrm{R}\text{, }&\left(\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{6}\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\sin(\frac{\pi }{3}-2x)dx=y
Swap sides so that all variable terms are on the left hand side.
x\sin(-2x+\frac{\pi }{3})d=y
The equation is in standard form.
\frac{x\sin(-2x+\frac{\pi }{3})d}{x\sin(-2x+\frac{\pi }{3})}=\frac{y}{x\sin(-2x+\frac{\pi }{3})}
Divide both sides by \sin(\frac{1}{3}\pi -2x)x.
d=\frac{y}{x\sin(-2x+\frac{\pi }{3})}
Dividing by \sin(\frac{1}{3}\pi -2x)x undoes the multiplication by \sin(\frac{1}{3}\pi -2x)x.
d=\frac{y}{x\sin(\frac{\pi -6x}{3})}
Divide y by \sin(\frac{1}{3}\pi -2x)x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}