Solve for y (complex solution)
y=\frac{e^{\frac{ie^{\left(2-i\right)x}+ie^{\left(2+i\right)x}+4}{2\cos(x)}}+e^{\frac{-ie^{\left(2-i\right)x}-ie^{\left(2+i\right)x}+4}{2\cos(x)}}+2}{2\cos(\left(e^{x}\right)^{2})}
\nexists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }x=\frac{\ln(2\pi n_{1}+\frac{\pi }{2})}{2}+\pi n_{2}i\right)\text{ and }\nexists n_{3}\in \mathrm{Z}\text{ : }\left(\exists n_{4}\in \mathrm{Z}\text{ : }x=\frac{\ln(2\pi n_{3}+\frac{3\pi }{2})}{2}+\pi n_{4}i\right)\text{ and }\nexists n_{5}\in \mathrm{Z}\text{ : }x=\pi n_{5}+\frac{\pi }{2}
Solve for y
\left\{\begin{matrix}y=\frac{1}{\cos(e^{2x})}+e^{\frac{2}{\cos(x)}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\ln(\pi n_{1}+\frac{\pi }{2})}{2}\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}+\frac{\pi }{2}\\y\in \mathrm{R}\text{, }&-\cos(\left(e^{x}\right)^{2})\left(e^{\frac{1}{\cos(x)}}\right)^{2}-1=0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{2}+1\right)}{2}\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }x=\frac{\ln(2n_{3}+1)+\ln(\pi )-\ln(2)}{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\ln(\frac{\pi \left(2n_{1}+1\right)}{2})}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}