Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{y}{\sin(\alpha )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\\a\in \mathrm{C}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{y}{\sin(\alpha )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\\a\in \mathrm{R}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\end{matrix}\right.
Solve for y
y=a\sin(\alpha )
Graph
Share
Copied to clipboard
a\sin(\alpha )=y
Swap sides so that all variable terms are on the left hand side.
\sin(\alpha )a=y
The equation is in standard form.
\frac{\sin(\alpha )a}{\sin(\alpha )}=\frac{y}{\sin(\alpha )}
Divide both sides by \sin(\alpha ).
a=\frac{y}{\sin(\alpha )}
Dividing by \sin(\alpha ) undoes the multiplication by \sin(\alpha ).
a\sin(\alpha )=y
Swap sides so that all variable terms are on the left hand side.
\sin(\alpha )a=y
The equation is in standard form.
\frac{\sin(\alpha )a}{\sin(\alpha )}=\frac{y}{\sin(\alpha )}
Divide both sides by \sin(\alpha ).
a=\frac{y}{\sin(\alpha )}
Dividing by \sin(\alpha ) undoes the multiplication by \sin(\alpha ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}