Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{x^{-\frac{1}{2}}y}{ecnrs}\text{, }&x\neq 0\text{ and }n\neq 0\text{ and }s\neq 0\text{ and }c\neq 0\text{ and }r\neq 0\\A\in \mathrm{C}\text{, }&\left(x=0\text{ or }n=0\text{ or }s=0\text{ or }c=0\text{ or }r=0\right)\text{ and }y=0\end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}c=\frac{x^{-\frac{1}{2}}y}{eAnrs}\text{, }&x\neq 0\text{ and }n\neq 0\text{ and }s\neq 0\text{ and }r\neq 0\text{ and }A\neq 0\\c\in \mathrm{C}\text{, }&\left(x=0\text{ or }n=0\text{ or }s=0\text{ or }r=0\text{ or }A=0\right)\text{ and }y=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{y}{e\sqrt{x}cnrs}\text{, }&n\neq 0\text{ and }s\neq 0\text{ and }c\neq 0\text{ and }r\neq 0\text{ and }x>0\\A\in \mathrm{R}\text{, }&\left(y=0\text{ and }r=0\text{ and }n\neq 0\text{ and }s\neq 0\text{ and }c\neq 0\text{ and }x>0\right)\text{ or }\left(y=0\text{ and }c=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }s=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }n=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }x=0\right)\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{y}{e\sqrt{x}Anrs}\text{, }&n\neq 0\text{ and }s\neq 0\text{ and }r\neq 0\text{ and }A\neq 0\text{ and }x>0\\c\in \mathrm{R}\text{, }&\left(y=0\text{ and }A=0\text{ and }n\neq 0\text{ and }s\neq 0\text{ and }r\neq 0\text{ and }x>0\right)\text{ or }\left(y=0\text{ and }r=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }s=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }n=0\text{ and }x\geq 0\right)\text{ or }\left(y=0\text{ and }x=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
Arcsen\sqrt{x}=y
Swap sides so that all variable terms are on the left hand side.
e\sqrt{x}cnrsA=y
The equation is in standard form.
\frac{e\sqrt{x}cnrsA}{e\sqrt{x}cnrs}=\frac{y}{e\sqrt{x}cnrs}
Divide both sides by rcsen\sqrt{x}.
A=\frac{y}{e\sqrt{x}cnrs}
Dividing by rcsen\sqrt{x} undoes the multiplication by rcsen\sqrt{x}.
A=\frac{x^{-\frac{1}{2}}y}{ecnrs}
Divide y by rcsen\sqrt{x}.
Arcsen\sqrt{x}=y
Swap sides so that all variable terms are on the left hand side.
e\sqrt{x}Anrsc=y
The equation is in standard form.
\frac{e\sqrt{x}Anrsc}{e\sqrt{x}Anrs}=\frac{y}{e\sqrt{x}Anrs}
Divide both sides by Arsen\sqrt{x}.
c=\frac{y}{e\sqrt{x}Anrs}
Dividing by Arsen\sqrt{x} undoes the multiplication by Arsen\sqrt{x}.
c=\frac{x^{-\frac{1}{2}}y}{eAnrs}
Divide y by Arsen\sqrt{x}.
Arcsen\sqrt{x}=y
Swap sides so that all variable terms are on the left hand side.
e\sqrt{x}cnrsA=y
The equation is in standard form.
\frac{e\sqrt{x}cnrsA}{e\sqrt{x}cnrs}=\frac{y}{e\sqrt{x}cnrs}
Divide both sides by rcsen\sqrt{x}.
A=\frac{y}{e\sqrt{x}cnrs}
Dividing by rcsen\sqrt{x} undoes the multiplication by rcsen\sqrt{x}.
Arcsen\sqrt{x}=y
Swap sides so that all variable terms are on the left hand side.
e\sqrt{x}Anrsc=y
The equation is in standard form.
\frac{e\sqrt{x}Anrsc}{e\sqrt{x}Anrs}=\frac{y}{e\sqrt{x}Anrs}
Divide both sides by Arsen\sqrt{x}.
c=\frac{y}{e\sqrt{x}Anrs}
Dividing by Arsen\sqrt{x} undoes the multiplication by Arsen\sqrt{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}