Solve for x (complex solution)
x=1+\left(2\ln(CosI(e^{\frac{1}{3}y+\frac{1}{3}i\pi }))+4i\pi n_{16}\right)\ln(2)^{-1}\text{, }n_{16}\in \mathrm{Z}
x=1+\left(2\ln(CosI(e^{\frac{1}{3}y}))+4i\pi n_{2}\right)\ln(2)^{-1}\text{, }n_{2}\in \mathrm{Z}
x=1+\left(2\ln(CosI(ie^{\frac{1}{3}y+\frac{1}{6}i\pi }))+4i\pi n_{30}\right)\ln(2)^{-1}\text{, }n_{30}\in \mathrm{Z}
Solve for y (complex solution)
y=\ln(\left(\arccos(\frac{2^{\frac{x+1}{2}}}{2})\right)^{3})
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{4\pi n_{1}i}{\ln(2)}+1
Solve for x
x=2\log_{2}\left(\cos(e^{\frac{y}{3}})\right)+1
\exists n_{2}\in \mathrm{Z}\text{ : }\left(\left(e^{\frac{y}{3}}>2\pi n_{2}+\frac{3\pi }{2}\text{ and }e^{\frac{y}{3}}<2\pi n_{2}+2\pi \right)\text{ or }\left(e^{\frac{y}{3}}>2\pi n_{2}\text{ and }e^{\frac{y}{3}}<2\pi n_{2}+\frac{\pi }{2}\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{e^{\frac{y}{3}}-\frac{\pi }{2}}{2\pi }\text{ and }n_{1}<\frac{e^{\frac{y}{3}}+\frac{\pi }{2}}{2\pi }\right)\text{ and }e^{\frac{y}{3}}\leq \pi \text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(\left(n_{2}>\frac{e^{\frac{y}{3}}-\frac{\pi }{2}}{2\pi }\text{ and }n_{2}<\frac{e^{\frac{y}{3}}}{2\pi }\right)\text{ or }\left(n_{2}>\frac{e^{\frac{y}{3}}-2\pi }{2\pi }\text{ and }n_{2}<\frac{e^{\frac{y}{3}}-\frac{3\pi }{2}}{2\pi }\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(e^{\frac{y}{3}}>2\pi n_{1}-\frac{\pi }{2}\text{ and }e^{\frac{y}{3}}<2\pi n_{1}+\frac{\pi }{2}\right)
Solve for y
y=3\ln(\arccos(\frac{2^{\frac{x+1}{2}}}{2}))
x<1
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}