Solve for y (complex solution)
y=-\frac{1}{x^{2}-2}
x\neq -\sqrt{2}\text{ and }x\neq \sqrt{2}\text{ and }x\neq -1\text{ and }x\neq 1
Solve for y
y=-\frac{1}{x^{2}-2}
|x|\neq \sqrt{2}\text{ and }|x|\neq 1
Solve for x (complex solution)
x=-\sqrt{2-\frac{1}{y}}
x=\sqrt{2-\frac{1}{y}}\text{, }y\neq 1\text{ and }y\neq 0
Solve for x
x=\sqrt{2-\frac{1}{y}}
x=-\sqrt{2-\frac{1}{y}}\text{, }y<0\text{ or }\left(y\neq 1\text{ and }y\geq \frac{1}{2}\right)
Graph
Share
Copied to clipboard
y-\frac{y-1}{x^{2}-1}=0
Subtract \frac{y-1}{x^{2}-1} from both sides.
y-\frac{y-1}{\left(x-1\right)\left(x+1\right)}=0
Factor x^{2}-1.
\frac{y\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{y-1}{\left(x-1\right)\left(x+1\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{y\left(x-1\right)\left(x+1\right)-\left(y-1\right)}{\left(x-1\right)\left(x+1\right)}=0
Since \frac{y\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{y-1}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}y+yx-yx-y-y+1}{\left(x-1\right)\left(x+1\right)}=0
Do the multiplications in y\left(x-1\right)\left(x+1\right)-\left(y-1\right).
\frac{x^{2}y+1-2y}{\left(x-1\right)\left(x+1\right)}=0
Combine like terms in x^{2}y+yx-yx-y-y+1.
x^{2}y+1-2y=0
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
x^{2}y-2y=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(x^{2}-2\right)y=-1
Combine all terms containing y.
\frac{\left(x^{2}-2\right)y}{x^{2}-2}=-\frac{1}{x^{2}-2}
Divide both sides by x^{2}-2.
y=-\frac{1}{x^{2}-2}
Dividing by x^{2}-2 undoes the multiplication by x^{2}-2.
y-\frac{y-1}{x^{2}-1}=0
Subtract \frac{y-1}{x^{2}-1} from both sides.
y-\frac{y-1}{\left(x-1\right)\left(x+1\right)}=0
Factor x^{2}-1.
\frac{y\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{y-1}{\left(x-1\right)\left(x+1\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{y\left(x-1\right)\left(x+1\right)-\left(y-1\right)}{\left(x-1\right)\left(x+1\right)}=0
Since \frac{y\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{y-1}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}y+yx-yx-y-y+1}{\left(x-1\right)\left(x+1\right)}=0
Do the multiplications in y\left(x-1\right)\left(x+1\right)-\left(y-1\right).
\frac{x^{2}y+1-2y}{\left(x-1\right)\left(x+1\right)}=0
Combine like terms in x^{2}y+yx-yx-y-y+1.
x^{2}y+1-2y=0
Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
x^{2}y-2y=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(x^{2}-2\right)y=-1
Combine all terms containing y.
\frac{\left(x^{2}-2\right)y}{x^{2}-2}=-\frac{1}{x^{2}-2}
Divide both sides by x^{2}-2.
y=-\frac{1}{x^{2}-2}
Dividing by x^{2}-2 undoes the multiplication by x^{2}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}