Solve for x
x=-\frac{5-4y}{2y-1}
y\neq \frac{1}{2}
Solve for y
y=-\frac{5-x}{2\left(x-2\right)}
x\neq 2
Graph
Share
Copied to clipboard
y\times 2\left(x-2\right)=x-5
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right).
2yx-2y\times 2=x-5
Use the distributive property to multiply y\times 2 by x-2.
2yx-4y=x-5
Multiply -2 and 2 to get -4.
2yx-4y-x=-5
Subtract x from both sides.
2yx-x=-5+4y
Add 4y to both sides.
\left(2y-1\right)x=-5+4y
Combine all terms containing x.
\left(2y-1\right)x=4y-5
The equation is in standard form.
\frac{\left(2y-1\right)x}{2y-1}=\frac{4y-5}{2y-1}
Divide both sides by 2y-1.
x=\frac{4y-5}{2y-1}
Dividing by 2y-1 undoes the multiplication by 2y-1.
x=\frac{4y-5}{2y-1}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}