y = \frac { x \sin x } { 1 + x } \cdot \operatorname { cosich } \frac { d y } { x }
Solve for d
\left\{\begin{matrix}d=\frac{4\left(x+1\right)e^{ch}}{-ie^{ix+2ch}+ie^{2ch-ix}+2\sin(x)}\text{, }&\left(-ie^{ix+2ch}+ie^{2ch-ix}+2\sin(x)\neq 0\text{ and }e^{ix+2ch}-e^{2ch-ix}+2i\sin(x)\neq 0\text{ and }x\neq -1\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }c=\frac{\pi \left(2in_{1}+i\right)}{2h}\right)\text{ or }\left(\nexists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}\text{ and }x\neq -1\text{ and }h=0\right)\\d\in \mathrm{C}\text{, }&y=0\text{ and }x\neq 0\text{ and }x\neq -1\end{matrix}\right.
Share
Copied to clipboard
yx\left(x+1\right)=xx\sin(x)\cos(ich)\times \frac{dy}{x}
Multiply both sides of the equation by x\left(x+1\right), the least common multiple of 1+x,x.
yx^{2}+yx=xx\sin(x)\cos(ich)\times \frac{dy}{x}
Use the distributive property to multiply yx by x+1.
yx^{2}+yx=x^{2}\sin(x)\cos(ich)\times \frac{dy}{x}
Multiply x and x to get x^{2}.
yx^{2}+yx=\frac{x^{2}dy}{x}\sin(x)\cos(ich)
Express x^{2}\times \frac{dy}{x} as a single fraction.
yx^{2}+yx=dxy\sin(x)\cos(ich)
Cancel out x in both numerator and denominator.
dxy\sin(x)\cos(ich)=yx^{2}+yx
Swap sides so that all variable terms are on the left hand side.
xy\sin(x)\cos(ich)d=xy+yx^{2}
The equation is in standard form.
\frac{xy\sin(x)\cos(ich)d}{xy\sin(x)\cos(ich)}=\frac{xy\left(x+1\right)}{xy\sin(x)\cos(ich)}
Divide both sides by xy\sin(x)\cos(ich).
d=\frac{xy\left(x+1\right)}{xy\sin(x)\cos(ich)}
Dividing by xy\sin(x)\cos(ich) undoes the multiplication by xy\sin(x)\cos(ich).
d=\frac{x+1}{\sin(x)\cos(ich)}
Divide yx\left(1+x\right) by xy\sin(x)\cos(ich).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}