Solve for x
x=6\left(y-1\right)
Solve for y
y=\frac{x+6}{6}
Graph
Share
Copied to clipboard
y=\frac{1}{6}x+1
Divide each term of x+6 by 6 to get \frac{1}{6}x+1.
\frac{1}{6}x+1=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}x=y-1
Subtract 1 from both sides.
\frac{\frac{1}{6}x}{\frac{1}{6}}=\frac{y-1}{\frac{1}{6}}
Multiply both sides by 6.
x=\frac{y-1}{\frac{1}{6}}
Dividing by \frac{1}{6} undoes the multiplication by \frac{1}{6}.
x=6y-6
Divide y-1 by \frac{1}{6} by multiplying y-1 by the reciprocal of \frac{1}{6}.
y=\frac{1}{6}x+1
Divide each term of x+6 by 6 to get \frac{1}{6}x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}