Solve for x
\left\{\begin{matrix}x=2m^{2}+y-2m-\frac{y}{m}+3\text{, }&m\neq 0\text{ and }m\neq 1\\x\in \mathrm{R}\text{, }&m=0\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
y\left(m-1\right)=m\left(x-2m^{2}-1\right)+2m\left(m-1\right)
Multiply both sides of the equation by m-1.
ym-y=m\left(x-2m^{2}-1\right)+2m\left(m-1\right)
Use the distributive property to multiply y by m-1.
ym-y=mx-2m^{3}-m+2m\left(m-1\right)
Use the distributive property to multiply m by x-2m^{2}-1.
ym-y=mx-2m^{3}-m+2m^{2}-2m
Use the distributive property to multiply 2m by m-1.
ym-y=mx-2m^{3}-3m+2m^{2}
Combine -m and -2m to get -3m.
mx-2m^{3}-3m+2m^{2}=ym-y
Swap sides so that all variable terms are on the left hand side.
mx-3m+2m^{2}=ym-y+2m^{3}
Add 2m^{3} to both sides.
mx+2m^{2}=ym-y+2m^{3}+3m
Add 3m to both sides.
mx=ym-y+2m^{3}+3m-2m^{2}
Subtract 2m^{2} from both sides.
mx=my-y+2m^{3}-2m^{2}+3m
The equation is in standard form.
\frac{mx}{m}=\frac{my-y+2m^{3}-2m^{2}+3m}{m}
Divide both sides by m.
x=\frac{my-y+2m^{3}-2m^{2}+3m}{m}
Dividing by m undoes the multiplication by m.
x=2m^{2}+y-2m-\frac{y}{m}+3
Divide ym-y+2m^{3}+3m-2m^{2} by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}