Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{3\left(5-y\right)}{x}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&y=5\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{3\left(5-y\right)}{k}\text{, }&k\neq 0\\x\in \mathrm{C}\text{, }&y=5\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{3\left(5-y\right)}{x}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&y=5\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{3\left(5-y\right)}{k}\text{, }&k\neq 0\\x\in \mathrm{R}\text{, }&y=5\text{ and }k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{kx}{3}+5=y
Swap sides so that all variable terms are on the left hand side.
\frac{kx}{3}=y-5
Subtract 5 from both sides.
kx=3y-15
Multiply both sides of the equation by 3.
xk=3y-15
The equation is in standard form.
\frac{xk}{x}=\frac{3y-15}{x}
Divide both sides by x.
k=\frac{3y-15}{x}
Dividing by x undoes the multiplication by x.
k=\frac{3\left(y-5\right)}{x}
Divide -15+3y by x.
\frac{kx}{3}+5=y
Swap sides so that all variable terms are on the left hand side.
\frac{kx}{3}=y-5
Subtract 5 from both sides.
kx=3y-15
Multiply both sides of the equation by 3.
\frac{kx}{k}=\frac{3y-15}{k}
Divide both sides by k.
x=\frac{3y-15}{k}
Dividing by k undoes the multiplication by k.
x=\frac{3\left(y-5\right)}{k}
Divide -15+3y by k.
\frac{kx}{3}+5=y
Swap sides so that all variable terms are on the left hand side.
\frac{kx}{3}=y-5
Subtract 5 from both sides.
kx=3y-15
Multiply both sides of the equation by 3.
xk=3y-15
The equation is in standard form.
\frac{xk}{x}=\frac{3y-15}{x}
Divide both sides by x.
k=\frac{3y-15}{x}
Dividing by x undoes the multiplication by x.
k=\frac{3\left(y-5\right)}{x}
Divide -15+3y by x.
\frac{kx}{3}+5=y
Swap sides so that all variable terms are on the left hand side.
\frac{kx}{3}=y-5
Subtract 5 from both sides.
kx=3y-15
Multiply both sides of the equation by 3.
\frac{kx}{k}=\frac{3y-15}{k}
Divide both sides by k.
x=\frac{3y-15}{k}
Dividing by k undoes the multiplication by k.
x=\frac{3\left(y-5\right)}{k}
Divide -15+3y by k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}