Solve for k (complex solution)
\left\{\begin{matrix}k=-2i\sqrt{y}\left(-\sin(2\theta )\right)^{-\frac{1}{2}}\text{; }k=2i\sqrt{y}\left(-\sin(2\theta )\right)^{-\frac{1}{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{1}}{2}\\k\in \mathrm{C}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{1}}{2}\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=2\sqrt{\frac{y}{\sin(2\theta )}}\text{; }k=-2\sqrt{\frac{y}{\sin(2\theta )}}\text{, }&\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(\theta >\pi n_{2}\text{ and }\theta <\pi n_{2}+\frac{\pi }{2}\right)\text{ and }y\geq 0\right)\text{ or }\left(\exists n_{3}\in \mathrm{Z}\text{ : }\left(\theta >\pi n_{3}+\frac{\pi }{2}\text{ and }\theta <\pi n_{3}+\pi \right)\text{ and }y\leq 0\right)\\k\in \mathrm{R}\text{, }&y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{1}}{2}\end{matrix}\right.
Solve for y
y=\frac{k^{2}\sin(2\theta )}{4}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}