Solve for n
\left\{\begin{matrix}n=-\frac{f}{y\left(t-v\right)}\text{, }&f\neq 0\text{ and }v\neq t\text{ and }y\neq 0\\n\neq 0\text{, }&y=0\text{ and }f=0\text{ and }v\neq t\end{matrix}\right.
Solve for f
f=ny\left(v-t\right)
n\neq 0\text{ and }v\neq t
Share
Copied to clipboard
yn\left(-t+v\right)=f
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n\left(-t+v\right).
-ynt+ynv=f
Use the distributive property to multiply yn by -t+v.
\left(-yt+yv\right)n=f
Combine all terms containing n.
\left(vy-ty\right)n=f
The equation is in standard form.
\frac{\left(vy-ty\right)n}{vy-ty}=\frac{f}{vy-ty}
Divide both sides by -yt+yv.
n=\frac{f}{vy-ty}
Dividing by -yt+yv undoes the multiplication by -yt+yv.
n=\frac{f}{y\left(v-t\right)}
Divide f by -yt+yv.
n=\frac{f}{y\left(v-t\right)}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}