Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{cxy+cy-1}{x}\text{, }&x\neq 0\text{ and }x\neq -1\text{ and }c\neq 0\\a\in \mathrm{C}\text{, }&x=0\text{ and }c\neq 0\text{ and }y=\frac{1}{c}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{cxy+cy-1}{x}\text{, }&x\neq 0\text{ and }x\neq -1\text{ and }c\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }c\neq 0\text{ and }y=\frac{1}{c}\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{ax+1}{y\left(x+1\right)}\text{, }&x\neq -1\text{ and }y\neq 0\text{ and }\left(x=0\text{ or }a\neq -\frac{1}{x}\right)\\c\neq 0\text{, }&x\neq -1\text{ and }y=0\text{ and }a=-\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
yc\left(x+1\right)=ax+1
Multiply both sides of the equation by c\left(x+1\right).
ycx+yc=ax+1
Use the distributive property to multiply yc by x+1.
ax+1=ycx+yc
Swap sides so that all variable terms are on the left hand side.
ax=ycx+yc-1
Subtract 1 from both sides.
xa=cxy+cy-1
The equation is in standard form.
\frac{xa}{x}=\frac{cxy+cy-1}{x}
Divide both sides by x.
a=\frac{cxy+cy-1}{x}
Dividing by x undoes the multiplication by x.
yc\left(x+1\right)=ax+1
Multiply both sides of the equation by c\left(x+1\right).
ycx+yc=ax+1
Use the distributive property to multiply yc by x+1.
ax+1=ycx+yc
Swap sides so that all variable terms are on the left hand side.
ax=ycx+yc-1
Subtract 1 from both sides.
xa=cxy+cy-1
The equation is in standard form.
\frac{xa}{x}=\frac{cxy+cy-1}{x}
Divide both sides by x.
a=\frac{cxy+cy-1}{x}
Dividing by x undoes the multiplication by x.
yc\left(x+1\right)=ax+1
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c\left(x+1\right).
ycx+yc=ax+1
Use the distributive property to multiply yc by x+1.
\left(yx+y\right)c=ax+1
Combine all terms containing c.
\left(xy+y\right)c=ax+1
The equation is in standard form.
\frac{\left(xy+y\right)c}{xy+y}=\frac{ax+1}{xy+y}
Divide both sides by xy+y.
c=\frac{ax+1}{xy+y}
Dividing by xy+y undoes the multiplication by xy+y.
c=\frac{ax+1}{y\left(x+1\right)}
Divide ax+1 by xy+y.
c=\frac{ax+1}{y\left(x+1\right)}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}