Solve for a
a=-\left(6-x\right)\left(y-4\right)
x\neq 6
Solve for x
\left\{\begin{matrix}x=-\frac{6y+a-24}{4-y}\text{, }&a\neq 0\text{ and }y\neq 4\\x\neq 6\text{, }&y=4\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y\left(x-6\right)=a+\left(x-6\right)\times 4
Multiply both sides of the equation by x-6.
yx-6y=a+\left(x-6\right)\times 4
Use the distributive property to multiply y by x-6.
yx-6y=a+4x-24
Use the distributive property to multiply x-6 by 4.
a+4x-24=yx-6y
Swap sides so that all variable terms are on the left hand side.
a-24=yx-6y-4x
Subtract 4x from both sides.
a=yx-6y-4x+24
Add 24 to both sides.
y\left(x-6\right)=a+\left(x-6\right)\times 4
Variable x cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by x-6.
yx-6y=a+\left(x-6\right)\times 4
Use the distributive property to multiply y by x-6.
yx-6y=a+4x-24
Use the distributive property to multiply x-6 by 4.
yx-6y-4x=a-24
Subtract 4x from both sides.
yx-4x=a-24+6y
Add 6y to both sides.
\left(y-4\right)x=a-24+6y
Combine all terms containing x.
\left(y-4\right)x=6y+a-24
The equation is in standard form.
\frac{\left(y-4\right)x}{y-4}=\frac{6y+a-24}{y-4}
Divide both sides by y-4.
x=\frac{6y+a-24}{y-4}
Dividing by y-4 undoes the multiplication by y-4.
x=\frac{6y+a-24}{y-4}\text{, }x\neq 6
Variable x cannot be equal to 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}