Solve for a
a=\frac{xy}{3}
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{3a}{y}\text{, }&a\neq 0\text{ and }y\neq 0\\x\neq 0\text{, }&y=0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\frac{a\times 3}{x}
Divide a by \frac{x}{3} by multiplying a by the reciprocal of \frac{x}{3}.
\frac{a\times 3}{x}=y
Swap sides so that all variable terms are on the left hand side.
a\times 3=yx
Multiply both sides of the equation by x.
3a=xy
The equation is in standard form.
\frac{3a}{3}=\frac{xy}{3}
Divide both sides by 3.
a=\frac{xy}{3}
Dividing by 3 undoes the multiplication by 3.
y=\frac{a\times 3}{x}
Divide a by \frac{x}{3} by multiplying a by the reciprocal of \frac{x}{3}.
\frac{a\times 3}{x}=y
Swap sides so that all variable terms are on the left hand side.
a\times 3=yx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
yx=a\times 3
Swap sides so that all variable terms are on the left hand side.
yx=3a
The equation is in standard form.
\frac{yx}{y}=\frac{3a}{y}
Divide both sides by y.
x=\frac{3a}{y}
Dividing by y undoes the multiplication by y.
x=\frac{3a}{y}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}