Solve for c (complex solution)
\left\{\begin{matrix}c=-d+\frac{13y}{9x}\text{, }&x\neq 0\\c\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for d (complex solution)
\left\{\begin{matrix}d=-c+\frac{13y}{9x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-d+\frac{13y}{9x}\text{, }&x\neq 0\\c\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-c+\frac{13y}{9x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\frac{9}{13}xc+\frac{9}{13}xd
Use the distributive property to multiply \frac{9}{13}x by c+d.
\frac{9}{13}xc+\frac{9}{13}xd=y
Swap sides so that all variable terms are on the left hand side.
\frac{9}{13}xc=y-\frac{9}{13}xd
Subtract \frac{9}{13}xd from both sides.
\frac{9x}{13}c=-\frac{9dx}{13}+y
The equation is in standard form.
\frac{13\times \frac{9x}{13}c}{9x}=\frac{13\left(-\frac{9dx}{13}+y\right)}{9x}
Divide both sides by \frac{9}{13}x.
c=\frac{13\left(-\frac{9dx}{13}+y\right)}{9x}
Dividing by \frac{9}{13}x undoes the multiplication by \frac{9}{13}x.
c=-d+\frac{13y}{9x}
Divide y-\frac{9dx}{13} by \frac{9}{13}x.
y=\frac{9}{13}xc+\frac{9}{13}xd
Use the distributive property to multiply \frac{9}{13}x by c+d.
\frac{9}{13}xc+\frac{9}{13}xd=y
Swap sides so that all variable terms are on the left hand side.
\frac{9}{13}xd=y-\frac{9}{13}xc
Subtract \frac{9}{13}xc from both sides.
\frac{9x}{13}d=-\frac{9cx}{13}+y
The equation is in standard form.
\frac{13\times \frac{9x}{13}d}{9x}=\frac{13\left(-\frac{9cx}{13}+y\right)}{9x}
Divide both sides by \frac{9}{13}x.
d=\frac{13\left(-\frac{9cx}{13}+y\right)}{9x}
Dividing by \frac{9}{13}x undoes the multiplication by \frac{9}{13}x.
d=-c+\frac{13y}{9x}
Divide y-\frac{9cx}{13} by \frac{9}{13}x.
y=\frac{9}{13}xc+\frac{9}{13}xd
Use the distributive property to multiply \frac{9}{13}x by c+d.
\frac{9}{13}xc+\frac{9}{13}xd=y
Swap sides so that all variable terms are on the left hand side.
\frac{9}{13}xc=y-\frac{9}{13}xd
Subtract \frac{9}{13}xd from both sides.
\frac{9x}{13}c=-\frac{9dx}{13}+y
The equation is in standard form.
\frac{13\times \frac{9x}{13}c}{9x}=\frac{13\left(-\frac{9dx}{13}+y\right)}{9x}
Divide both sides by \frac{9}{13}x.
c=\frac{13\left(-\frac{9dx}{13}+y\right)}{9x}
Dividing by \frac{9}{13}x undoes the multiplication by \frac{9}{13}x.
c=-d+\frac{13y}{9x}
Divide y-\frac{9dx}{13} by \frac{9}{13}x.
y=\frac{9}{13}xc+\frac{9}{13}xd
Use the distributive property to multiply \frac{9}{13}x by c+d.
\frac{9}{13}xc+\frac{9}{13}xd=y
Swap sides so that all variable terms are on the left hand side.
\frac{9}{13}xd=y-\frac{9}{13}xc
Subtract \frac{9}{13}xc from both sides.
\frac{9x}{13}d=-\frac{9cx}{13}+y
The equation is in standard form.
\frac{13\times \frac{9x}{13}d}{9x}=\frac{13\left(-\frac{9cx}{13}+y\right)}{9x}
Divide both sides by \frac{9}{13}x.
d=\frac{13\left(-\frac{9cx}{13}+y\right)}{9x}
Dividing by \frac{9}{13}x undoes the multiplication by \frac{9}{13}x.
d=-c+\frac{13y}{9x}
Divide y-\frac{9cx}{13} by \frac{9}{13}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}