Solve for A
A=\frac{y\left(x+2\right)^{2}}{32}
x\neq -2
Solve for x (complex solution)
\left\{\begin{matrix}x=-4y^{-\frac{1}{2}}\sqrt{2A}-2\text{; }x=4\sqrt{2}y^{-\frac{1}{2}}\sqrt{A}-2\text{, }&A\neq 0\text{ and }y\neq 0\\x\neq -2\text{, }&y=0\text{ and }A=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-4\sqrt{\frac{2A}{y}}-2\text{; }x=4\sqrt{\frac{2A}{y}}-2\text{, }&y>0\text{ and }A>0\\x=-4\sqrt{\frac{2A}{y}}-2\text{; }x=4\sqrt{\frac{2A}{y}}-2\text{, }&y<0\text{ and }A<0\\x\neq -2\text{, }&y=0\text{ and }A=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=\frac{8}{\frac{1}{4}x^{2}+x+1}A
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+1\right)^{2}.
\frac{8}{\frac{1}{4}x^{2}+x+1}A=y
Swap sides so that all variable terms are on the left hand side.
\frac{8}{\frac{x^{2}}{4}+x+1}A=y
The equation is in standard form.
\frac{\frac{8}{\frac{x^{2}}{4}+x+1}A\left(\frac{x^{2}}{4}+x+1\right)}{8}=\frac{y\left(\frac{x^{2}}{4}+x+1\right)}{8}
Divide both sides by 8\left(\frac{1}{4}x^{2}+x+1\right)^{-1}.
A=\frac{y\left(\frac{x^{2}}{4}+x+1\right)}{8}
Dividing by 8\left(\frac{1}{4}x^{2}+x+1\right)^{-1} undoes the multiplication by 8\left(\frac{1}{4}x^{2}+x+1\right)^{-1}.
A=\frac{y\left(x+2\right)^{2}}{32}
Divide y by 8\left(\frac{1}{4}x^{2}+x+1\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}