Solve for B
\left\{\begin{matrix}B=\frac{2y-21\beta +5}{18y}\text{, }&\beta \neq \frac{5}{21}\text{ and }y\neq 0\\B\neq \frac{1}{9}\text{, }&y=0\text{ and }\beta =\frac{5}{21}\end{matrix}\right.
Solve for y
y=-\frac{5-21\beta }{2\left(1-9B\right)}
B\neq \frac{1}{9}
Graph
Share
Copied to clipboard
y\times 2\left(-9B+1\right)=7\times 3\beta -5
Variable B cannot be equal to \frac{1}{9} since division by zero is not defined. Multiply both sides of the equation by 2\left(-9B+1\right).
-18yB+y\times 2=7\times 3\beta -5
Use the distributive property to multiply y\times 2 by -9B+1.
-18yB+y\times 2=21\beta -5
Multiply 7 and 3 to get 21.
-18yB=21\beta -5-y\times 2
Subtract y\times 2 from both sides.
-18yB=21\beta -5-2y
Multiply -1 and 2 to get -2.
\left(-18y\right)B=-2y+21\beta -5
The equation is in standard form.
\frac{\left(-18y\right)B}{-18y}=\frac{-2y+21\beta -5}{-18y}
Divide both sides by -18y.
B=\frac{-2y+21\beta -5}{-18y}
Dividing by -18y undoes the multiplication by -18y.
B=-\frac{-2y+21\beta -5}{18y}
Divide 21\beta -5-2y by -18y.
B=-\frac{-2y+21\beta -5}{18y}\text{, }B\neq \frac{1}{9}
Variable B cannot be equal to \frac{1}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}