Solve for x
x=-\frac{y}{5}
Solve for y
y=-5x
Graph
Share
Copied to clipboard
y=\frac{5x+5y}{4}
Use the distributive property to multiply 5 by x+y.
y=\frac{5}{4}x+\frac{5}{4}y
Divide each term of 5x+5y by 4 to get \frac{5}{4}x+\frac{5}{4}y.
\frac{5}{4}x+\frac{5}{4}y=y
Swap sides so that all variable terms are on the left hand side.
\frac{5}{4}x=y-\frac{5}{4}y
Subtract \frac{5}{4}y from both sides.
\frac{5}{4}x=-\frac{1}{4}y
Combine y and -\frac{5}{4}y to get -\frac{1}{4}y.
\frac{5}{4}x=-\frac{y}{4}
The equation is in standard form.
\frac{\frac{5}{4}x}{\frac{5}{4}}=-\frac{\frac{y}{4}}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{\frac{y}{4}}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x=-\frac{y}{5}
Divide -\frac{y}{4} by \frac{5}{4} by multiplying -\frac{y}{4} by the reciprocal of \frac{5}{4}.
y=\frac{5x+5y}{4}
Use the distributive property to multiply 5 by x+y.
y=\frac{5}{4}x+\frac{5}{4}y
Divide each term of 5x+5y by 4 to get \frac{5}{4}x+\frac{5}{4}y.
y-\frac{5}{4}y=\frac{5}{4}x
Subtract \frac{5}{4}y from both sides.
-\frac{1}{4}y=\frac{5}{4}x
Combine y and -\frac{5}{4}y to get -\frac{1}{4}y.
-\frac{1}{4}y=\frac{5x}{4}
The equation is in standard form.
\frac{-\frac{1}{4}y}{-\frac{1}{4}}=\frac{5x}{-\frac{1}{4}\times 4}
Multiply both sides by -4.
y=\frac{5x}{-\frac{1}{4}\times 4}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
y=-5x
Divide \frac{5x}{4} by -\frac{1}{4} by multiplying \frac{5x}{4} by the reciprocal of -\frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}