Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\frac{50-5y}{3\left(y+1\right)}
Use the distributive property to multiply 5 by 10-y.
y=\frac{50-5y}{3y+3}
Use the distributive property to multiply 3 by y+1.
y-\frac{50-5y}{3y+3}=0
Subtract \frac{50-5y}{3y+3} from both sides.
y-\frac{50-5y}{3\left(y+1\right)}=0
Factor 3y+3.
\frac{y\times 3\left(y+1\right)}{3\left(y+1\right)}-\frac{50-5y}{3\left(y+1\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{3\left(y+1\right)}{3\left(y+1\right)}.
\frac{y\times 3\left(y+1\right)-\left(50-5y\right)}{3\left(y+1\right)}=0
Since \frac{y\times 3\left(y+1\right)}{3\left(y+1\right)} and \frac{50-5y}{3\left(y+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}+3y-50+5y}{3\left(y+1\right)}=0
Do the multiplications in y\times 3\left(y+1\right)-\left(50-5y\right).
\frac{3y^{2}+8y-50}{3\left(y+1\right)}=0
Combine like terms in 3y^{2}+3y-50+5y.
\frac{3\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)}{3\left(y+1\right)}=0
Factor the expressions that are not already factored in \frac{3y^{2}+8y-50}{3\left(y+1\right)}.
\frac{\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)}{y+1}=0
Cancel out 3 in both numerator and denominator.
\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)=0
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by y+1.
\left(y+\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)=0
To find the opposite of -\frac{1}{3}\sqrt{166}-\frac{4}{3}, find the opposite of each term.
\left(y+\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)\left(y-\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)=0
To find the opposite of \frac{1}{3}\sqrt{166}-\frac{4}{3}, find the opposite of each term.
y^{2}+\frac{8}{3}y-\frac{1}{9}\left(\sqrt{166}\right)^{2}+\frac{16}{9}=0
Use the distributive property to multiply y+\frac{1}{3}\sqrt{166}+\frac{4}{3} by y-\frac{1}{3}\sqrt{166}+\frac{4}{3} and combine like terms.
y^{2}+\frac{8}{3}y-\frac{1}{9}\times 166+\frac{16}{9}=0
The square of \sqrt{166} is 166.
y^{2}+\frac{8}{3}y-\frac{166}{9}+\frac{16}{9}=0
Multiply -\frac{1}{9} and 166 to get -\frac{166}{9}.
y^{2}+\frac{8}{3}y-\frac{50}{3}=0
Add -\frac{166}{9} and \frac{16}{9} to get -\frac{50}{3}.
y=\frac{-\frac{8}{3}±\sqrt{\left(\frac{8}{3}\right)^{2}-4\left(-\frac{50}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{8}{3} for b, and -\frac{50}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-4\left(-\frac{50}{3}\right)}}{2}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}+\frac{200}{3}}}{2}
Multiply -4 times -\frac{50}{3}.
y=\frac{-\frac{8}{3}±\sqrt{\frac{664}{9}}}{2}
Add \frac{64}{9} to \frac{200}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{8}{3}±\frac{2\sqrt{166}}{3}}{2}
Take the square root of \frac{664}{9}.
y=\frac{2\sqrt{166}-8}{2\times 3}
Now solve the equation y=\frac{-\frac{8}{3}±\frac{2\sqrt{166}}{3}}{2} when ± is plus. Add -\frac{8}{3} to \frac{2\sqrt{166}}{3}.
y=\frac{\sqrt{166}-4}{3}
Divide \frac{-8+2\sqrt{166}}{3} by 2.
y=\frac{-2\sqrt{166}-8}{2\times 3}
Now solve the equation y=\frac{-\frac{8}{3}±\frac{2\sqrt{166}}{3}}{2} when ± is minus. Subtract \frac{2\sqrt{166}}{3} from -\frac{8}{3}.
y=\frac{-\sqrt{166}-4}{3}
Divide \frac{-8-2\sqrt{166}}{3} by 2.
y=\frac{\sqrt{166}-4}{3} y=\frac{-\sqrt{166}-4}{3}
The equation is now solved.
y=\frac{50-5y}{3\left(y+1\right)}
Use the distributive property to multiply 5 by 10-y.
y=\frac{50-5y}{3y+3}
Use the distributive property to multiply 3 by y+1.
y-\frac{50-5y}{3y+3}=0
Subtract \frac{50-5y}{3y+3} from both sides.
y-\frac{50-5y}{3\left(y+1\right)}=0
Factor 3y+3.
\frac{y\times 3\left(y+1\right)}{3\left(y+1\right)}-\frac{50-5y}{3\left(y+1\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{3\left(y+1\right)}{3\left(y+1\right)}.
\frac{y\times 3\left(y+1\right)-\left(50-5y\right)}{3\left(y+1\right)}=0
Since \frac{y\times 3\left(y+1\right)}{3\left(y+1\right)} and \frac{50-5y}{3\left(y+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}+3y-50+5y}{3\left(y+1\right)}=0
Do the multiplications in y\times 3\left(y+1\right)-\left(50-5y\right).
\frac{3y^{2}+8y-50}{3\left(y+1\right)}=0
Combine like terms in 3y^{2}+3y-50+5y.
\frac{3\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)}{3\left(y+1\right)}=0
Factor the expressions that are not already factored in \frac{3y^{2}+8y-50}{3\left(y+1\right)}.
\frac{\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)}{y+1}=0
Cancel out 3 in both numerator and denominator.
\left(y-\left(-\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)=0
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by y+1.
\left(y+\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)\left(y-\left(\frac{1}{3}\sqrt{166}-\frac{4}{3}\right)\right)=0
To find the opposite of -\frac{1}{3}\sqrt{166}-\frac{4}{3}, find the opposite of each term.
\left(y+\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)\left(y-\frac{1}{3}\sqrt{166}+\frac{4}{3}\right)=0
To find the opposite of \frac{1}{3}\sqrt{166}-\frac{4}{3}, find the opposite of each term.
y^{2}+\frac{8}{3}y-\frac{1}{9}\left(\sqrt{166}\right)^{2}+\frac{16}{9}=0
Use the distributive property to multiply y+\frac{1}{3}\sqrt{166}+\frac{4}{3} by y-\frac{1}{3}\sqrt{166}+\frac{4}{3} and combine like terms.
y^{2}+\frac{8}{3}y-\frac{1}{9}\times 166+\frac{16}{9}=0
The square of \sqrt{166} is 166.
y^{2}+\frac{8}{3}y-\frac{166}{9}+\frac{16}{9}=0
Multiply -\frac{1}{9} and 166 to get -\frac{166}{9}.
y^{2}+\frac{8}{3}y-\frac{50}{3}=0
Add -\frac{166}{9} and \frac{16}{9} to get -\frac{50}{3}.
y^{2}+\frac{8}{3}y=\frac{50}{3}
Add \frac{50}{3} to both sides. Anything plus zero gives itself.
y^{2}+\frac{8}{3}y+\left(\frac{4}{3}\right)^{2}=\frac{50}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{8}{3}y+\frac{16}{9}=\frac{50}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{8}{3}y+\frac{16}{9}=\frac{166}{9}
Add \frac{50}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{4}{3}\right)^{2}=\frac{166}{9}
Factor y^{2}+\frac{8}{3}y+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{4}{3}\right)^{2}}=\sqrt{\frac{166}{9}}
Take the square root of both sides of the equation.
y+\frac{4}{3}=\frac{\sqrt{166}}{3} y+\frac{4}{3}=-\frac{\sqrt{166}}{3}
Simplify.
y=\frac{\sqrt{166}-4}{3} y=\frac{-\sqrt{166}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.