Solve for x
x=-\frac{3y}{5}+1
Solve for y
y=\frac{5-5x}{3}
Graph
Share
Copied to clipboard
y=-\frac{5}{3}x+\frac{5}{3}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
-\frac{5}{3}x+\frac{5}{3}=y
Swap sides so that all variable terms are on the left hand side.
-\frac{5}{3}x=y-\frac{5}{3}
Subtract \frac{5}{3} from both sides.
\frac{-\frac{5}{3}x}{-\frac{5}{3}}=\frac{y-\frac{5}{3}}{-\frac{5}{3}}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{5}{3}}{-\frac{5}{3}}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
x=-\frac{3y}{5}+1
Divide y-\frac{5}{3} by -\frac{5}{3} by multiplying y-\frac{5}{3} by the reciprocal of -\frac{5}{3}.
y=-\frac{5}{3}x+\frac{5}{3}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}